Skip to main content
Log in

Correlation between neuromelanin-sensitive MR imaging and 123I-FP-CIT SPECT in patients with parkinsonism

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Neuromelanin-sensitive MR imaging (MRI) can visualize neuromelanin-containing neurons in the substantia nigra pars compacta (SNc), and its utility has been reported in the evaluation of parkinsonism. Conversely, dopamine transporter imaging by 123I-N-v-fluoropropyl-2b-carbomethoxy-3b-(4-iodophenyl)nortropane (FP-CIT) SPECT (DaTSCAN) is now an established method for evaluating parkinsonism, detecting presynaptic dopamine neuronal dysfunction. Both methods can assist differentiating neurodegenerative and other forms of parkinsonism. However, to our knowledge, there have been no studies concerning a correlation between the two methods. The aim of this study was to assess the utility of neuromelanin-sensitive MRI for diagnosing parkinsonism by examining a correlation with DaTSCAN.

Methods

Twenty-three patients with parkinsonism who underwent both neuromelanin-sensitive MRI and DaTSCAN were included. We measured the neuromelanin-positive SNc region volume by manually contouring the high signal intensity region of the SNc on neuromelanin-sensitive MRI and measured the specific binding ratio (SBR) on DaTSCAN. The asymmetry index of neuromelanin-positive SNc volume and the asymmetry index of SBR were also calculated.

Results

The volume of the neuromelanin-positive SNc region showed significant correlation with specific binding ratio (SBR) (right P < .001, ρ = 0.78, left P < .001, ρ = 0.86). The asymmetry index of neuromelanin-positive SNc volume also showed significant correlations with the asymmetry index of SBR (P < .001, ρ = 0.73).

Conclusions

Decrease of the high signal intensity region of the SNc on neuromelanin-sensitive MRI would indicate damage to the nigrostriatal dopaminergic function as well as loss of dopaminergic neurons. We conclude that neuromelanin-sensitive MRI is a useful diagnostic biomarker for parkinsonism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fearnley JM, Lees AJ (1991) Aging and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301

    Article  PubMed  Google Scholar 

  2. Ozawa T, Paviour D, Quinn NP, Josephs KA, Sangha H, Kilford L, Healy DG, Wood NW, Lees AJ, Holton JL, Revesz T (2004) The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain 127:2657–2671

    Article  PubMed  Google Scholar 

  3. Morris H, Wood N, Lees A (1999) Progressive supranuclear palsy (Steele-Richardson-Olszewski disease). Postgrad Med J 75:579–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Josephs KA, Tang-Wai DF, Edland SD, Knopman DS, Dickson DW, Parisi JE, Petersen RC, Jack CR Jr, Boeve BF (2004) Correlation between antemortem magnetic resonance imaging findings and pathologically confirmed corticobasal degeneration. Arch Neurol 61:1881–1884

    PubMed  Google Scholar 

  5. Graham DG (1979) On the origin and significance of neuromelanin. Arch Pathol Lab Med 103:359–362

    CAS  PubMed  Google Scholar 

  6. Bazelon M, Fenichel GM, Randall J (1967) Studies on neuromelanin: I. A melanin system in the human adult brainstem. Neurology 17:512–519

    Article  CAS  PubMed  Google Scholar 

  7. Stepień K, Wilczok A, Zajdel A, Dzierzega-Lecznar A, Wilczok T (2000) Peroxynitrite mediated linoleic acid oxidation and tyrosine nitration in the presence of synthetic neuromelanins. Acta Biochim Pol 47:931–940

    PubMed  Google Scholar 

  8. Kooncumchoo P, Sharma S, Porter J, Govitrapong P, Ebadi M (2006) Coenzyme Q(10) provides neuroprotection in iron-induced apoptosis in dopaminergic neurons. J Mol Neurosci 28:125–141

    Article  CAS  PubMed  Google Scholar 

  9. Sharma S, Moon CS, Khogali A, Haidous A, Chabenne A, Ojo C, Jelebinkov M, Kurdi Y, Ebadi M (2013) Biomarkers in Parkinson's disease (recent update). Neurochem Int 63:201–229. doi:10.1016/j.neuint.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  10. Sasaki M, Shibata E, Tohyama K, Takahashi J, Otsuka K, Tsuchiya K, Takahashi S, Ehara S, Terayama Y, Sakai A (2006) Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease. NeuroReport 17:1215–1218

    Article  PubMed  Google Scholar 

  11. Mann DM, Yates PO (1983) Possible role of neuromelanin in the pathogenesis of Parkinson’s disease. Mech Ageing Dev 21:193–203

    Article  CAS  PubMed  Google Scholar 

  12. Schwarz ST, Rittman T, Gontu V, Morgan PS, Bajaj N, Auer DP (2011) T1-weighted MRI shows stage-dependent substantia nigra signal loss in Parkinson’s disease. Mov Disord 26:1633–1638. doi:10.1002/mds.23722

    Article  PubMed  Google Scholar 

  13. Kashihara K, Shinya T, Higaki F (2011) Neuromelanin magnetic resonance imaging of nigral volume loss in patients with Parkinson’s disease. J Clin Neurosci 18:1093–1096. doi:10.1016/j.jocn.2010.08.043

    Article  PubMed  Google Scholar 

  14. Nikolaus S, Antke C, Kley K, Poeppel TD, Hautzel H, Schmidt D, Müller HW (2007) Investigating the dopaminergic synapse in vivo: I. Molecular imaging studies in humans. Rev Neurosci 18:439–472

    CAS  PubMed  Google Scholar 

  15. Nikolaus S, Antke C, Muller HW (2009) In vivo imaging of synaptic function in the central nervous system: I. Movement disorders and dementia. Behav Brain Res 204:1–31. doi:10.1016/j.bbr.2009.06.008

    Article  PubMed  Google Scholar 

  16. la Fougère C, Pöpperl G, Levin J, Wängler B, Böning G, Uebleis C, Cumming P, Bartenstein P, Bötzel K, Tatsch K (2010) The value of the dopamine D2/3 receptor ligand 18F-desmethoxyfallypride for the differentiation of idiopathic and nonidiopathic parkinsonian syndromes. J Nucl Med 51:581–587. doi:10.2967/jnumed.109.071811

    Article  PubMed  Google Scholar 

  17. Kim YJ, Ichise M, Ballinger JR, Vines D, Erami SS, Tatschida T, Lang AE (2002) Combination of dopamine transporter and D2 receptor SPECT in the diagnostic evaluation of PD, MSA, and PSP. Mov Disord 17:303–312

    Article  PubMed  Google Scholar 

  18. Südmeyer M, Antke C, Zizek T, Beu M, Nikolaus S, Wojtecki L, Schnitzler A, Müller HW (2011) Diagnostic accuracy of combined FP-CIT, IBZM, and MIBG scintigraphy in the differential diagnosis of degenerative parkinsonism: a multidimensional statistical approach. J Nucl Med 52:733–740. doi:10.2967/jnumed.110.086959

    Article  PubMed  Google Scholar 

  19. Kägi G, Bhatia KP, Tolosa E (2010) The role of DAT-SPECT in movement disorders. J Neurol Neurosurg Psychiatry 81:5–12. doi:10.1136/jnnp.2008.157370

    Article  PubMed  Google Scholar 

  20. Kashihara K, Shinya T, Higaki F (2011) Reduction of neuromelanin-positive nigral volume in patients with MSA, PSP and CBD. Intern Med 50:1683–1687

    Article  PubMed  Google Scholar 

  21. Dickson JC, Tossici-Bolt L, Sera T, Erlandsson K, Varrone A, Tatsch K, Hutton BF (2010) The impact of reconstruction method on the quantification of DaTSCAN images. Eur J Nucl Med Mol Imaging 37:23–35. doi:10.1007/s00259-009-1212-z

    Article  PubMed  Google Scholar 

  22. Enochs WS, Hyslop WB, Bennett HF, Brown RD 3rd, Koenig SH, Swartz HM (1997) Sources of the increased longitudinal relaxation rates observed in melanotic melanoma: an in vitro study of synthetic melanins. Investig Radiol 24:794–804

    Article  Google Scholar 

  23. Enochs WS, Petherick P, Bogdanova A, Mohr U, Weissleder R (1997) Paramagnetic metal scavenging by melanin: MR imaging. Radiology 204:417–423

    Article  CAS  PubMed  Google Scholar 

  24. Ohtsuka C, Sasaki M, Konno K, Kato K, Takahashi J, Yamashita F, Terayama Y (2014) Differentiation of early-stage parkinsonisms using neuromelanin-sensitive magnetic resonance imaging. Parkinsonism Relat Disord 20:755–760. doi:10.1016/j.parkreldis.2014.04.005

    Article  PubMed  Google Scholar 

  25. Kitao S, Matsusue E, Fujii S, Miyoshi F, Kaminou T, Kato S, Ito H, Ogawa T (2013) Correlation between pathology and neuromelanin MR imaging in Parkinson’s disease and dementia with Lewy bodies. Neuroradiology 55:947–953. doi:10.1007/s00234-013-1199-9

    Article  PubMed  Google Scholar 

  26. Seibyl JP, Marek KL, Quinlan D, Sheff K, Zoghbi S, Zea-Ponce Y, Baldwin RM, Fussell B, Smith EO, Charney DS, van Dyck C et al (1995) Decreased single photon emission computed tomographic [123I]beta-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Ann Neurol 38:589–598

    Article  CAS  PubMed  Google Scholar 

  27. Colloby SJ, McParland S, O'Brien JT, Attems J (2012) Neuropathological correlates of dopaminergic imaging in Alzheimer’s disease and Lewy body dementias. Brain 135:2798–2808. doi:10.1093/brain/aws211

    Article  PubMed  Google Scholar 

  28. Litvan I, MacIntyre A, Goetz CG, Wenning GK, Jellinger K, Verny M, Bartko JJ, Jankovic J, McKee A, Brandel JP, Chaudhuri KR, Lai EC, D'Olhaberriague L, Pearce RK, Agid Y (1998) Accuracy of the clinical diagnoses of Lewy body disease, Parkinson disease, and dementia with Lewy bodies: a clinicopathologic study. Arch Neurol 55:969–978

    Article  CAS  PubMed  Google Scholar 

  29. Tissingh G, Bergmans P, Booij J, Winogrodzka A, van Royen EA, Stoof JC, Wolters EC (1998) Drug-naive patients with Parkinson’s disease in Hoehn and Yahr stages I and II show a bilateral decrease in striatal dopamine transporters as revealed by [123I]beta-CIT SPECT. J Neurol 245:14–20

    Article  CAS  PubMed  Google Scholar 

  30. Rossi C, Frosini D, Volterrani D, De Feo P, Unti E, Nicoletti V, Kiferle L, Bonuccelli U, Ceravolo R (2010) Differences in nigro-striatal impairment in clinical variants of early Parkinson’s disease: evidence from a FP-CIT SPECT study. Eur J Neurol 17:626–630

    Article  CAS  PubMed  Google Scholar 

  31. Contrafatto D, Mostile G, Nicoletti A, Dibilio V, Raciti L, Lanzafame S, Luca A, Distefano A, Zappia M (2012) [(123) I]FP-CIT-SPECT asymmetry index to differentiate Parkinson’s disease from vascular parkinsonism. Acta Neurol Scand 126:12–16. doi:10.1111/j.1600-0404.2011.01583.x

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J, Zhang Y, Wang J, Cai P, Luo C, Qian Z, Dai Y, Feng H (2010) Characterizing iron deposition in Parkinson’s disease using susceptibility-weighted imaging: an in vivo MR study. Brain Res 1330:124–130. doi:10.1016/j.brainres.2010.03.036

    Article  CAS  PubMed  Google Scholar 

  33. Baudrexel S, Nürnberger L, Rüb U, Seifried C, Klein JC, Deller T, Steinmetz H, Deichmann R, Hilker R (2010) Quantitative mapping of T1 and T2* discloses nigral and brainstem pathology in early Parkinson’s disease. Neuroimage 51:512–520. doi:10.1016/j.neuroimage.2010.03.005

    Article  PubMed  Google Scholar 

  34. Barbosa JH, Santos AC, Tumas V, Liu M, Zheng W, Haacke EM, Salmon CE (2015) Quantifying brain iron deposition in patients with Parkinson’s disease using quantitative susceptibility mapping, R2 and R2*. Magn Reson Imaging 33:559–565. doi:10.1016/j.mri.2015.02.021

    Article  CAS  PubMed  Google Scholar 

  35. Haller S, Badoud S, Nguyen D, Barnaure I, Montandon ML, Lovblad KO, Burkhard PR (2013) Differentiation between Parkinson disease and other forms of Parkinsonism using support vector machine analysis of susceptibility-weighted imaging (SWI): initial results. Eur Radiol 23:12–19. doi:10.1007/s00330-012-2579-y

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Butros SR, Shuai X, Dai Y, Chen C, Liu M, Haacke EM, Hu J, Xu H (2012) Different iron-deposition patterns of multiple system atrophy with predominant parkinsonism and idiopathetic Parkinson diseases demonstrated by phase-corrected susceptibility-weighted imaging. AJNR Am J Neuroradiol 33:266–273. doi:10.3174/ajnr.A2765

    Article  CAS  PubMed  Google Scholar 

  37. Ogisu K, Kudo K, Sasaki M, Sakushima K, Yabe I, Sasaki H, Terae S, Nakanishi M, Shirato H (2013) 3D neuromelanin-sensitive magnetic resonance imaging with semi-automated volume measurement of the substantia nigra pars compacta for diagnosis of Parkinson’s disease. Neuroradiology 55:719–724. doi:10.1007/s00234-013-1171-8

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keita Kuya.

Ethics declarations

This research project was approved by the appropriate Ethics Committee and has therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. Although patient consent was waived for this retrospective study, MRI and 123I-FP-CIT SPECT studies were performed with informed consent of the patient or the patient’s relatives.

Conflict of interest

We declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuya, K., Shinohara, Y., Miyoshi, F. et al. Correlation between neuromelanin-sensitive MR imaging and 123I-FP-CIT SPECT in patients with parkinsonism. Neuroradiology 58, 351–356 (2016). https://doi.org/10.1007/s00234-016-1644-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-016-1644-7

Keywords

Navigation