Skip to main content

Advertisement

Log in

Iron deposition influences the measurement of water diffusion tensor in the human brain: a combined analysis of diffusion and iron-induced phase changes

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

This study aims to evaluate the impact of iron deposition during aging on the measurement of water diffusion in the brain.

Methods

Diffusion tensor images (DTI) and phase images collected from a group of healthy adults from 23 to 72 years old were retrospectively analyzed. The axial diffusivity, radial diffusivity, mean diffusivity (MD), and fractional anisotropy (FA) in the frontal white matter and deep gray matter nuclei were calculated. The phase changes in these regions were used to estimate local iron concentration. Pearson correlation analysis was used to evaluate the age dependence of DTI metrics and iron concentration. Multiple linear regression models were then built to examine the independent effect of age and iron deposition on DTI metrics.

Results

Age-related iron deposition occurred in the putamen (r = 0.680, P < 0.001) and frontal white matter (r = 0.333, P = 0.007). In the putamen, FA increased with elevated iron concentration (P = 0.042) excluding the effect of age, and MD decreased with iron deposition with marginal statistical significance (P = 0.067). In the frontal white matter, increase in iron level was also associated with a decrease in MD and an increase in FA. Moreover, radial diffusivity was more reduced than axial diffusivity as local iron concentration increased.

Conclusion

Iron deposition in the brain during aging decreases water diffusion and increases the degree of anisotropy. Caution is needed when using DTI metrics for diagnosis of various neurological diseases involving abnormal iron deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Le Bihan D, Mangin JF, Poupon C et al (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546

    Article  PubMed  Google Scholar 

  2. Sundgren PC, Dong Q, Gómez-Hassan D, Mukherji SK, Maly P, Welsh R (2004) Diffusion tensor imaging of the brain: review of clinical applications. Neuroradiology 46:339–350

    Article  CAS  PubMed  Google Scholar 

  3. Sullivan EV, Pfefferbaum A (2006) Diffusion tensor imaging and aging. Neurosci Biobehav Rev 30:749–761

    Article  PubMed  Google Scholar 

  4. Sullivan EV, Pfefferbaum A (2007) Neuroradiological characterization of normal adult ageing. Br J Radiol 80:S99–S108

    Article  PubMed  Google Scholar 

  5. Song SK, Yoshino J, Le TQ et al (2005) Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage 15(26):132–140

    Article  Google Scholar 

  6. Bhagat YA, Beaulieu C (2004) Diffusion anisotropy in subcortical white matter and cortical gray matter: changes with aging and the role of CSF-suppression. J Magn Reson Imaging 20:216–227

    Article  PubMed  Google Scholar 

  7. Furutani K, Harada M, Minato M, Morita N, Nishitani H (2005) Regional changes of fractional anisotropy with normal aging using statistical parametric mapping (SPM). J Med Investig 52:186–190

    Article  Google Scholar 

  8. Zhang YT, Zhang CY, Zhang J, Li W (2005) Age related changes of normal adult brain structure: analyzed with diffusion tensor imaging. Chin Med J 118:1059–1065

    PubMed  Google Scholar 

  9. Abe O, Yamasue H, Aoki S et al (2008) Aging in the CNS: comparison of gray/white matter volume and diffusion tensor data. Neurobiol Aging 29:102–116

    Article  PubMed  Google Scholar 

  10. Pfefferbaum A, Adalsteinsson E, Rohlfing T, Sullivan EV (2010) Diffusion tensor imaging of deep gray matter brain structures: effects of age and iron concentration. Neurobiol Aging 31:482–493

    Article  PubMed Central  PubMed  Google Scholar 

  11. Pal D, Trivedi R, Saksena S et al (2011) Quantification of age and gender related changes in diffusion tensor imaging indices in deep grey matter of the normal human brain. J Clin Neurosci 18:193–196

    Article  PubMed  Google Scholar 

  12. Wang Q, Xu X, Zhang M (2010) Normal aging in the basal ganglia evaluated by eigenvalues of diffusion tensor imaging. AJNR Am J Neuroradiol 31:516–520

    Article  CAS  PubMed  Google Scholar 

  13. Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51

    Article  CAS  PubMed  Google Scholar 

  14. Schipper HM (2004) Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Res Rev 3:265–301

    Article  CAS  PubMed  Google Scholar 

  15. Xu X, Wang Q, Zhang M (2008) Age, gender, and hemispheric differences in iron deposition in the human brain: an in vivo MRI study. NeuroImage 40:35–42

    Article  CAS  PubMed  Google Scholar 

  16. Awasthi R, Gupta RK, Trivedi R, Singh JK, Paliwal VK, Rathore RK (2010) Diffusion tensor MR imaging in children with pantothenate kinase associated neurodegeneration with brain iron accumulation and their siblings. AJNR Am J Neuroradiol 31:442–447

    Article  CAS  PubMed  Google Scholar 

  17. Ling HW, Ding B, Wang H, Zhang H, Chen KM (2011) Could iron accumulation be a etiology of the white matter change in Alzheimer’s disease: using phase imaging to detect white matter iron deposition based on diffusion tensor imaging. Dement Geriatr Cogn Disord 31:300–308

    Article  PubMed  Google Scholar 

  18. Haacke EM, Muhammad A, Khan A et al (2007) Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain. J Magn Reson Imaging 26:256–264

    Article  PubMed  Google Scholar 

  19. Drayer B, Burger P, Darwin R, Riederer S, Herfkens R, Johnson GA (1986) MRI of brain iron. AJR Am J Roentgenol 147:103–110

    Article  CAS  PubMed  Google Scholar 

  20. Haacke EM, Cheng NY, House MJ et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23:1–25

    Article  CAS  PubMed  Google Scholar 

  21. Hong X, Dixon TW (1992) Measuring diffusion in inhomogeneous systems in imaging mode using antisymmetric sensitizing gradients. J Magn Reson 99:561–570

    CAS  Google Scholar 

  22. Zhong J, Gore JC (1991) Studies of restricted diffusion in heterogeneous media containing variations in susceptibility. Magn Reson Med 19:276–284

    Article  CAS  PubMed  Google Scholar 

  23. Zhong J, Kennan RP, Gore JC (1991) Effects of susceptibility variations on NMR measurement of diffusion. J Magn Reson 95:267–280

    CAS  Google Scholar 

  24. Dose MD, Zhong J, Gore JC (1999) In vivo measurement of ADC change due to intravascular susceptibility variation. Magn Reson Med 41:236–240

    Article  Google Scholar 

  25. Trudeau JD, Thomas DW, Hawkins J (1995) The effect of inhomogenerous sample susceptibility on measured diffusion anisotropy using NMR imaging. J Magn Reson B 108:22–30

    Article  CAS  PubMed  Google Scholar 

  26. Beaulieu C, Allen PS (1996) An in vitro evaluation of the effects of local magnetic susceptibility induced gradients on anisotropic water diffusion in nerve. Magn Reson Med 36:39–44

    Article  CAS  PubMed  Google Scholar 

  27. Clark CA, Barker GJ, Tofts PS (1999) An in vivo evaluation of the effects of local magnetic susceptibility-induced gradients on water diffusion measurements in human brain. J Magn Reson 141:52–61

    Article  CAS  PubMed  Google Scholar 

  28. Liu C, Li W, Wu B, Jiang Y, Johnson GA (2012) 3D fiber tractography with susceptibility tensor imaging. NeuroImage 59:1290–1298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Li W, Wu B, Avram AV, Liu C (2012) Magnetic susceptibility anisotropy of human brain in vivo and its molecular underpinnings. NeuroImage 59:2088–2097

    Article  PubMed Central  PubMed  Google Scholar 

  30. Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906

    Article  CAS  PubMed  Google Scholar 

  31. Anderson AW (2001) Theoretical analysis of the effects of noise on diffusion tensor imaging. Magn Reson Med 46:1174–1188

    Article  CAS  PubMed  Google Scholar 

  32. Haris M, Gupta RK, Husain N, Hasan KM, Husain M, Narayana PA (2006) Measurement of DTI metrics in hemorrhagic brain lesions: possible implication in MRI interpretation. J Magn Reson Imaging 24:1259–1268

    Article  PubMed  Google Scholar 

  33. Zecca L, Youdim MB, Riederer P, Cornor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    Article  CAS  PubMed  Google Scholar 

  34. Yoshikawa K, Nakata Y, Yamada K, Nakagawa M (2004) Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI. J Neurol Neurosurg Psychiatry 75:481–484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Boska MD, Hasan KM, Kibuule D et al (2007) Quantitative diffusion tensor imaging detects dopaminergic neuronal degeneration in a murine model of Parkinson’s disease. Neurobiol Dis 26:590–596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Vaillancourt DE, Spraker MB, Prodoehl J et al (2009) High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 72:1378–1384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kantarci K, Avula R, Senjem ML et al (2010) Dementia with Lewy bodies and Alzheimer disease: neurodegenerative patterns characterized by DTI. Neurology 74:1814–1821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Rossi C, Boss A, Martirosian P et al (2008) Influence of steady background gradients on the accuracy of molecular diffusion anisotropy measurements. Magn Reson Imaging 26:1250–1258

    Article  PubMed  Google Scholar 

  39. Zhu WZ, Zhong WD, Wang W et al (2009) Quantitative MR phase-corrected imaging to investigate increased brain iron deposition of patients with Alzheimer disease. Radiology 253:497–504

    Article  PubMed  Google Scholar 

  40. Zhang J, Zhang Y, Wang J et al (2010) Characterizing iron deposition in Parkinson’s disease using susceptibility-weighted imaging: an in vivo MR study. Brain Res 1330:124–130

    Article  CAS  PubMed  Google Scholar 

  41. Jin L, Wang J, Zhao L et al (2011) Decreased serum ceruloplasmin levels characteristically aggravate nigral iron deposition in Parkinson’s disease. Brain 134:50–58

    Article  PubMed  Google Scholar 

  42. Zivadinov R, Heininen-Brown M, Schirda CV et al (2012) Abnormal subcortical deep-gray matter susceptibility-weighted imaging filtered phase measurements in patients with multiple sclerosis: a case-control study. Neuroimage 59:331–339

    Article  PubMed  Google Scholar 

  43. Liu C, Li W, Tong KA et al (2015) Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging 42:23–41

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Technology R&D Program of China (2012BAI10B04), the National Natural Science Foundation of China (81371519), the Zhejiang Provincial Natural Science Foundation of China (LY12H18002), the Medical Scientific Research Foundation of Zhejiang Province (2009QN005), and the Educational Scientific Research Foundation of Zhejiang Province (Y200909841).

Ethical standards and patient consent

We declare that all human studies have been approved by the Research Ethics Committee of Second Affiliated Hospital, Zhejiang University School of Medicine, and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that all patients gave informed consent prior to inclusion in this study.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Wang, Q., Zhong, J. et al. Iron deposition influences the measurement of water diffusion tensor in the human brain: a combined analysis of diffusion and iron-induced phase changes. Neuroradiology 57, 1169–1178 (2015). https://doi.org/10.1007/s00234-015-1579-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-015-1579-4

Keywords

Navigation