Skip to main content

Advertisement

Log in

Diffusion tensor imaging parameters’ changes of cerebellar hemispheres in Parkinson’s disease

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Studies with diffusion tensor imaging (DTI) analysis have produced conflicting information about the involvement of the cerebellar hemispheres in Parkinson’s disease (PD). We, thus, used a new approach for the analysis of DTI parameters in order to ascertain the involvement of the cerebellum in PD.

Methods

We performed a fiber tract-based analysis of cerebellar peduncles and cerebellar hemispheres in 16 healthy subjects and in 16 PD patients with more than 5 years duration of disease, using a 3T MRI scanner and a constrained spherical deconvolution (CSD) approach for tractographic reconstructions. In addition, we performed statistical analysis of DTI parameters and fractional anisotropy (FA) XYZ direction samplings.

Results

We found a statistically significant decrement of FA values in PD patients compared to controls (p < 0.05). In addition, extrapolating and analyzing FA XYZ direction samplings for each patient and each control, we found that this result was due to a stronger decrement of FA values along the Y axis (antero-posterior direction) (p < 0.01); FA changes along X and Z axes were not statistically significant (p > 0.05). We confirmed also no statistically significant differences of FA and apparent diffusion coefficient (ADC) for cerebellar peduncles in PD patients compared to healthy controls.

Conclusions

The DTI-based cerebellar abnormalities in PD could constitute an advance in the knowledge of this disease. We demonstrated a statistically significant reduction of FA in cerebellar hemispheres of PD patients compared to healthy controls. Our work also demonstrated that the use of more sophisticated approaches in the DTI parameter analysis could potentially have a clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lew M (2007) Overview of Parkinson’s disease. Pharmacotherapy 27(12 Pt 2):155S–160S

    Article  CAS  PubMed  Google Scholar 

  2. Damier P, Hirsch EC, Agid Y et al (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122(Pt 8):1437–1448

    Article  PubMed  Google Scholar 

  3. Blandini F, Nappi G, Tassorelli C et al (2000) Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 62(1):63–88

    Article  CAS  PubMed  Google Scholar 

  4. Wu T, Hallett M (2013) The cerebellum in Parkinson’s disease. Brain 136(Pt 3):696–709

    Article  PubMed  Google Scholar 

  5. Yu H, Sternad D, Corcos DM et al (2007) Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. Neuroimage 35(1):222–233

    Article  PubMed Central  PubMed  Google Scholar 

  6. Jankovic J, Kapadia AS (2001) Functional decline in Parkinson disease. Arch Neurol 58(10):1611–1615

    Article  CAS  PubMed  Google Scholar 

  7. Nicoletti G, Lodi R, Condino F et al (2006) Apparent diffusion coefficient measurements of the middle cerebellar peduncle differentiate the Parkinson variant of MSA from Parkinson’s disease and progressive supranuclear palsy. Brain 129(Pt 10):2679–2687

    Article  PubMed  Google Scholar 

  8. Kim HJ, Kim SJ, Kim HS et al (2013) Alterations of mean diffusivity in brain white matter and deep gray matter in Parkinson’s disease. Neurosci Lett 550:64–68

    Article  CAS  PubMed  Google Scholar 

  9. Gattellaro G, Minati L, Grisoli M et al (2009) White matter involvement in idiopathic Parkinson disease: a diffusion tensor imaging study. AJNR Am J Neuroradiol 30(6):1222–1226

    Article  CAS  PubMed  Google Scholar 

  10. Schwarz ST, Abaei M, Gontu V et al (2013) Diffusion tensor imaging of nigral degeneration in Parkinson’s disease: a region-of-interest and voxel-based study at 3 T and systematic review with meta-analysis. Neuroimage Clin 3:481–488

    Article  PubMed Central  PubMed  Google Scholar 

  11. Nicoletti G, Rizzo G, Barbagallo G et al (2013) Diffusivity of cerebellar hemispheres enables discrimination of cerebellar or parkinsonian multiple system atrophy from progressive supranuclear palsy-Richardson syndrome and Parkinson disease. Radiology 267(3):843–850

    Article  PubMed  Google Scholar 

  12. Embleton KV, Haroon HA, Morris DM et al (2010) Distortion correction for diffusion-weighted MRI tractography and fMRI in the temporal lobes. Hum Brain Mapp 31:1570–1587

    Article  PubMed  Google Scholar 

  13. Jones DK, Horsfield MA, Simmons A (1999) Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 42:515–525

    Article  CAS  PubMed  Google Scholar 

  14. Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4):1459–1472

    Article  PubMed  Google Scholar 

  15. Jones DK, Cercignani M (2010) Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 23:803–820

    Article  PubMed  Google Scholar 

  16. Tournier JD, Calamante F, Connelly A (2012) MRtrix: diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 22(1):53–66

    Article  Google Scholar 

  17. Pajevic S, Pierpaoli C (1999) Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 42:526–540

    Article  CAS  PubMed  Google Scholar 

  18. Descoteaux M, Deriche R, Knösche TR et al (2009) Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans Med Imaging 28:269–286

    Article  PubMed  Google Scholar 

  19. Tournier JD, Calamante F, Connelly A (2011) Effect of step size on probabilistic streamlines: implications for the interpretation of connectivity analysis. Proc Intl Soc Mag Reson Med 19:2019

    Google Scholar 

  20. Alexander DC, Barker GJ (2005) Optimal imaging parameters for fiber-orientation estimation in diffusion MRI. Neuroimage 27:357–367

    Article  PubMed  Google Scholar 

  21. Leemans A, Jeurissen B, Sijbers J et al (2009) ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. Proc Intl Soc Mag Reson Med 245:3537

    Google Scholar 

  22. Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27(3):832–837

    Article  Google Scholar 

  23. Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065–1076

    Article  Google Scholar 

  24. Parker GJ, Luzzi S, Alexander DC et al (2005) Lateralization of ventral and dorsal auditory-language pathways in the human brain. Neuroimage 24:656–666

    Article  PubMed  Google Scholar 

  25. Lebel C, Beaulieu C (2009) Lateralization of the arcuate fasciculus from childhood to adulthood and its relation to cognitive abilities in children. Hum Brain Mapp 30:3563–3573

    Article  PubMed  Google Scholar 

  26. Ota M, Nakata Y, Ito K et al (2013) Differential diagnosis tool for parkinsonian syndrome using multiple structural brain measures. Comput Math Methods Med 2013:571289

    Article  PubMed Central  PubMed  Google Scholar 

  27. Wang PS, Wu HM, Lin CP et al (2011) Use of diffusion tensor imaging to identify similarities and differences between cerebellar and Parkinsonism forms of multiple system atrophy. Neuroradiology 53(7):471–481

    Article  PubMed  Google Scholar 

  28. Zhang K, Yu C, Zhang Y et al (2011) Voxel-based analysis of diffusion tensor indices in the brain in patients with Parkinson’s disease. Eur J Radiol 77(2):269–273

    Article  PubMed  Google Scholar 

  29. Cochrane CJ, Ebmeier KP (2013) Diffusion tensor imaging in parkinsonian syndromes: a systematic review and meta-analysis. Neurology 80(9):857–864

    Article  PubMed Central  PubMed  Google Scholar 

  30. Alvarez-Linera J (2008) 3 T MRI: advances in brain imaging. Eur J Radiol 67(3):415–426

    Article  PubMed  Google Scholar 

  31. Frayne R, Goodyear BG, Dickhoff P et al (2003) Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Invest Radiol 38(7):385–402

    PubMed  Google Scholar 

  32. Vollmar C, O’Muircheartaigh J, Barker GJ et al (2010) Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0 T scanners. Neuroimage 51(4):1384–1394

    Article  PubMed Central  PubMed  Google Scholar 

  33. Chung AW, Thomas DL, Ordidge RJ et al (2013) Diffusion tensor parameters and principal eigenvector coherence: relation to b-value intervals and field strength. Magn Reson Imaging 31(5):742–747

    Article  PubMed  Google Scholar 

  34. Wedeen VJ, Wang RP, Schmahmann JD et al (2008) Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage 41(4):1267–1277

    Article  CAS  PubMed  Google Scholar 

  35. Jbabdi S, Johansen-Berg H (2013) Tractography: where do we go from here? Brain Connect 1(3):169–183

    Article  Google Scholar 

  36. Tournier JD, Yeh CH, Calamante F et al (2008) Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. Neuroimage 42(2):617–625

    Article  PubMed  Google Scholar 

  37. Okada T, Miki Y, Fushimi Y et al (2006) Diffusion-tensor fiber tractography: intraindividual comparison of 3.0-T and 1.5-T MR imaging. Radiology 238(2):668–678

    Article  PubMed  Google Scholar 

  38. Tournier JD, Calamante F, Connelly A (2013) Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging. NMR Biomed 26(12):1775–1786

    Article  PubMed  Google Scholar 

  39. Gallagher DA, Schapira AH (2009) Etiopathogenesis and treatment of Parkinson’s disease. Curr Top Med Chem 9(10):860–868

    CAS  PubMed  Google Scholar 

  40. Piao YS, Mori F, Hayashi S et al (2003) Alpha-synuclein pathology affecting Bergmann glia of the cerebellum in patients with alpha-synucleinopathies. Acta Neuropathol 105(4):403–409

    PubMed  Google Scholar 

  41. Wakabayashi K, Hayashi S, Yoshimoto M et al (2000) NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol 99(1):14–20

    Article  CAS  PubMed  Google Scholar 

  42. Mori F, Piao YS, Hayashi S et al (2003) Alpha-synuclein accumulates in Purkinje cells in Lewy body disease but not in multiple system atrophy. J Neuropathol Exp Neurol 62(8):812–819

    CAS  PubMed  Google Scholar 

  43. Beaulieu C (2014) The biological basis of diffusion anisotropy. In: Johansen-Berg H, Behrens TEJ (eds) Diffusion MRI. From quantitative measurements to in-vivo neuroanatomy. Elsevier, Amsterdam, pp 155–178

    Google Scholar 

  44. Beaulieu C, Does MD, Snyder RE et al (1996) Changes in water diffusion due to Wallerian degeneration in peripheral nerve. Magn Reson Med 36:627–631

    Article  CAS  PubMed  Google Scholar 

  45. Bartels AL, Leenders KL (2007) Neuroinflammation in the pathophysiology of Parkinson’s disease: evidence from animal models to human in vivo studies with [11C]-PK11195 PET. Mov Disord 22(13):1852–1856

    Article  PubMed  Google Scholar 

  46. Bartels AL, Willemsen AT, Doorduin J et al (2010) [11C]-PK11195 PET: quantification of neuroinflammation and a monitor of anti-inflammatory treatment in Parkinson’s disease? Parkinsonism Relat Disord 16(1):57–59

    Article  CAS  PubMed  Google Scholar 

  47. Watson MB, Richter F, Lee SK et al (2012) Regionally-specific microglial activation in young mice over-expressing human wildtype alpha-synuclein. Exp Neurol 237(2):318–334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Jellinger KA (2001) Cell death mechanisms in neurodegeneration. J Cell Mol Med 5(1):1–17

    Article  CAS  PubMed  Google Scholar 

  49. Tievsky AL, Ptak T, Farkas J (1999) Investigation of apparent diffusion coefficient and diffusion tensor anisotrophy in acute and chronic multiple sclerosis lesions. AJNR Am J Neuroradiol 20(8):1491–1499

    CAS  PubMed  Google Scholar 

  50. Nicoletti G, Tonon C, Lodi R et al (2008) Apparent diffusion coefficient of the superior cerebellar peduncle differentiates progressive supranuclear palsy from Parkinson’s disease. Mov Disord 23(16):2370–2376

    Article  PubMed  Google Scholar 

  51. Blain CR, Barker GJ, Jarosz JM et al (2006) Measuring brain stem and cerebellar damage in parkinsonian syndromes using diffusion tensor MRI. Neurology 67(12):2199–2205

    Article  CAS  PubMed  Google Scholar 

  52. Rizzo G, Martinelli P, Manners D et al (2008) Diffusion-weighted brain imaging study of patients with clinical diagnosis of corticobasal degeneration, progressive supranuclear palsy and Parkinson’s disease. Brain 131(Pt 10):2690–2700

    Article  PubMed  Google Scholar 

  53. Parker GD, Marshall D, Rosin PL et al (2013) A pitfall in the reconstruction of fibre ODFs using spherical deconvolution of diffusion MRI data. Neuroimage 65:433–448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Mount Sinai Hospital, New York, for the helpful collaboration.

Ethical standards and patient consent

We declare that all human studies have been approved by our Ethics Committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that all patients gave informed consent prior to inclusion in this study.

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Arrigo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mormina, E., Arrigo, A., Calamuneri, A. et al. Diffusion tensor imaging parameters’ changes of cerebellar hemispheres in Parkinson’s disease. Neuroradiology 57, 327–334 (2015). https://doi.org/10.1007/s00234-014-1473-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-014-1473-5

Keywords

Navigation