Skip to main content

Advertisement

Log in

Diffusion tensor imaging to evaluate commissural disconnection after corpus callosotomy

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Corpus callosum transection can prevent propagation of epileptic discharges. If seizures persist after surgery, assessment of the efficacy of the transection requires knowledge that the commissural fibers have been disrupted. We evaluated whether diffusion tensor imaging (DTI) and diffusion tensor fiber tracking can assess the degree of callosal transection and determine which white matter pathways remain intact.

Methods

This HIPAA-compliant retrospective study was performed after Institutional Review Board approval. Patients who underwent corpus callosotomy with postoperative magnetic resonance imaging (MRI) that included DTI were identified. Axial DTI was performed with either 15 or 25 noncollinear directions of encoding. MRI and DTI were reviewed by two board-certified neuroradiologists to evaluate commissural disconnection.

Results

One hundred eleven patients underwent corpus callosotomy with postoperative MRI, of which 32 had postoperative DTI. Of these 32, there were 16 males and 16 females, with a mean age of 12.2 ± 6.3 years (range 0.24 to 32.8 years, median 12.3). Eighteen patients had undergone complete callosal transection and 14 patients had partial callosal transection. Seventeen of 18 patients undergoing complete callosal transection had structural and diffusion tensor fiber tracking (DT-FT) evidence of complete transection. The forceps major was intact in all patients undergoing partial transection. At least some commissural fibers originating from the precuneus, postcentral gyrus, and posterior cingulate were intact in all six partial transections which spared the callosal isthmus.

Conclusion

DTI and DT-FT aid in the postoperative characterization in patients with callosal transection for seizure control. This can confirm whether the intended fibers have been disconnected, helping in the planning for possible further surgical intervention versus other therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DT-FT:

Diffusion tensor fiber tracking

DE-FA:

Directionally encoded fractional anisotropy

FA:

Fractional anisotropy

References

  1. Raybaud C (2010) The corpus callosum, the other great forebrain commissures, and the septum pellucidum: anatomy, development, and malformation. Neuroradiology 52:447–477. doi:10.1007/s00234-010-0696-3

    Article  PubMed  Google Scholar 

  2. Tanriverdi T, Olivier A, Poulin N et al (2009) Long-term seizure outcome after corpus callosotomy: a retrospective analysis of 95 patients. J Neurosurg 110:332–342. doi:10.3171/2008.3.17570

    Article  PubMed  Google Scholar 

  3. Iwasaki M, Uematsu M, Sato Y et al (2012) Complete remission of seizures after corpus callosotomy. J Neurosurg Pediatr 10:7–13. doi:10.3171/2012.3.PEDS11544

    Article  PubMed  Google Scholar 

  4. Sunaga S, Shimizu H, Sugano H (2009) Long-term follow-up of seizure outcomes after corpus callosotomy. Seizure 18:124–128. doi:10.1016/j.seizure.2008.08.001

    Article  PubMed  Google Scholar 

  5. van Wagenen WP, Herren RY (1940) Surgical division of commissural pathways in the corpus callosum: relation to spread of an epileptic attack. Arch Neurol Psych 44:740

    Article  Google Scholar 

  6. Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    PubMed  Google Scholar 

  7. Pierpaoli C, Jezzard P, Basser PJ et al (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648

    PubMed  CAS  Google Scholar 

  8. Moseley ME, Cohen Y, Kucharczyk J et al (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176:439–445

    PubMed  CAS  Google Scholar 

  9. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269

    Article  PubMed  CAS  Google Scholar 

  10. Pillai JJ, Zaca D, Choudhri A (2010) Clinical impact of integrated physiologic brain tumor imaging. Technol Cancer Res Treat 9:359–380

    PubMed  Google Scholar 

  11. Pizzini FB, Polonara G, Mascioli G et al (2010) Diffusion tensor tracking of callosal fibers several years after callosotomy. Brain Res 1312:10–17. doi:10.1016/j.brainres.2009.11.030

    Article  PubMed  CAS  Google Scholar 

  12. Moreno-Jiménez S, San-Juan D, Lárraga-Gutiérrez JM et al (2012) Diffusion tensor imaging in radiosurgical callosotomy. Seizure 21:473–477. doi:10.1016/j.seizure.2012.03.013

    Article  PubMed  Google Scholar 

  13. Concha L, Gross DW, Wheatley BM, Beaulieu C (2006) Diffusion tensor imaging of time-dependent axonal and myelin degradation after corpus callosotomy in epilepsy patients. Neuroimage 32:1090–1099. doi:10.1016/j.neuroimage.2006.04.187

    Article  PubMed  Google Scholar 

  14. Beaulieu C, Does MD, Snyder RE, Allen PS (1996) Changes in water diffusion due to Wallerian degeneration in peripheral nerve. Magn Reson Med 36:627–631

    Article  PubMed  CAS  Google Scholar 

  15. Khurana DS, Strawsburg RH, Robertson RL et al (1999) MRI signal changes in the white matter after corpus callosotomy. Pediatr Neurol 21:691–695

    Article  PubMed  CAS  Google Scholar 

  16. Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited—comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 32:989–994. doi:10.1016/j.neuroimage.2006.05.044

    Article  PubMed  Google Scholar 

  17. Chepuri NB, Yen Y-F, Burdette JH et al (2002) Diffusion anisotropy in the corpus callosum. AJNR Am J Neuroradiol 23:803–808

    PubMed  Google Scholar 

  18. Mukherjee P, Berman JI, Chung SW et al (2008) Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR Am J Neuroradiol 29:632–641. doi:10.3174/ajnr.A1051

    Article  PubMed  CAS  Google Scholar 

  19. Huisman TAGM, Schwamm LH, Schaefer PW et al (2004) Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR Am J Neuroradiol 25:370–376

    PubMed  Google Scholar 

  20. Huisman TAGM, Sorensen AG, Hergan K et al (2003) Diffusion-weighted imaging for the evaluation of diffuse axonal injury in closed head injury. J Comp Assist Tomography 27:5–11

    Article  Google Scholar 

  21. Wozniak J, Krach L, Ward E et al (2007) Neurocognitive and neuroimaging correlates of pediatric traumatic brain injury: a diffusion tensor imaging (DTI) study. Arch Clin Neuropsychol 22:555–568. doi:10.1016/j.acn.2007.03.004

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim F. Choudhri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhri, A.F., Whitehead, M.T., McGregor, A.L. et al. Diffusion tensor imaging to evaluate commissural disconnection after corpus callosotomy. Neuroradiology 55, 1397–1403 (2013). https://doi.org/10.1007/s00234-013-1286-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-013-1286-y

Keywords

Navigation