Skip to main content

Advertisement

Log in

Reflux venous flow in dural sinus and internal jugular vein on 3D time-of-flight MR angiography

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Reflux venous signal on the brain and neck time-of-flight magnetic resonance angiography (TOF MRA) is thought to be related to a compressed left brachiocephalic vein. This study is aimed to assess the prevalence of venous reflux flow in internal jugular vein (IJV), sigmoid sinus/transverse sinus (SS/TS), and inferior petrosal sinus (IPS) on the brain and neck TOF MRA and its pattern.

Methods

From the radiology database, 3,475 patients (1,526 men, 1,949 women, age range 19–94, median age 62 years) with brain and neck standard 3D TOF MRA at 3 T and 1.5 T were identified. Rotational maximal intensity projection images of 3D TOF MRA were assessed for the presence of reflux flow in IJV, IPS, and SS/TS.

Results

Fifty-five patients (1.6 %) had reflux flow, all in the left side. It was more prevalent in females (n = 43/1,949, 2.2 %) than in males (n = 12/1,526, 0.8 %) (p = 0.001). The mean age of patients with reflux flow (66 years old) was older than those (60 years old) without reflux flow (p = 0.001). Three patients had arteriovenous shunt in the left arm for hemodialysis. Of the remaining 52 patients, reflux was seen on IJV in 35 patients (67.3 %). There were more patients with reflux flow seen on SS/TS (n = 34) than on IPS (n = 25).

Conclusion

Venous reflux flow on TOF MRA is infrequently observed, and reflux pattern is variable. Because it is exclusively located in the left side, the reflux signal on TOF MRA could be an alarm for an undesirable candidate for a contrast injection on the left side for contrast-enhanced imaging study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tanaka T, Uemura K, Takahashi M, Takehara S, Fukaya T, Tokuyama T, Satoh A, Ryu H (1993) Compression of the left brachiocephalic vein: cause of high signal intensity of the left sigmoid sinus and internal jugular vein on MR images. Radiology 188(2):355–361

    PubMed  CAS  Google Scholar 

  2. Paksoy Y, Genc BO, Genc E (2003) Retrograde flow in the left inferior petrosal sinus and blood steal of the cavernous sinus associated with central vein stenosis: MR angiographic findings. AJNR Am J Neuroradiol 24(7):1364–1368

    PubMed  Google Scholar 

  3. Uchino A, Nomiyama K, Takase Y, Nakazono T, Tominaga Y, Imaizumi T, Kudo S (2007) Retrograde flow in the dural sinuses detected by three-dimensional time-of-flight MR angiography. Neuroradiology 49(3):211–215. doi:10.1007/s00234-006-0186-9

    Article  PubMed  Google Scholar 

  4. Inano S, Itoh D, Takao H, Hayashi N, Mori H, Kunimatsu A, Abe O, Aoki S, Ohtomo K (2010) High signal intensity in the dural sinuses on 3D-TOF MR angiography at 3.0 T. Clin Imaging 34(5):332–336. doi:10.1016/j.clinimag.2009.06.028

    Article  PubMed  Google Scholar 

  5. San Millan Ruiz D, Gailloud P, Rufenacht DA, Delavelle J, Henry F, Fasel JH (2002) The craniocervical venous system in relation to cerebral venous drainage. AJNR Am J Neuroradiol 23(9):1500–1508

    PubMed  Google Scholar 

  6. Liauw L, van Buchem MA, Spilt A, de Bruine FT, van den Berg R, Hermans J, Wasser MN (2000) MR angiography of the intracranial venous system. Radiology 214(3):678–682

    PubMed  CAS  Google Scholar 

  7. Escott EJ, Branstetter BF (2006) It's not a cervical lymph node, it's a vein: CT and MR imaging findings in the veins of the head and neck. Radiographics 26(5):1501–1515. doi:10.1148/rg.265055728

    Article  PubMed  Google Scholar 

  8. Mitsuhashi Y, Nishio A, Kawahara S, Ichinose T, Yamauchi S, Naruse H, Matsuoka Y, Ohata K, Hara M (2007) Morphologic evaluation of the caudal end of the inferior petrosal sinus using 3D rotational venography. AJNR Am J Neuroradiol 28(6):1179–1184. doi:10.3174/ajnr.A0489

    Article  PubMed  CAS  Google Scholar 

  9. Kemmling A, Noelte I, Gerigk L, Singer S, Groden C, Scharf J (2008) A diagnostic pitfall for intracranial aneurysms in time-of-flight MR angiography: small intracranial lipomas. AJR Am J Roentgenol 190(1):W62–67. doi:10.2214/AJR.07.2517

    Article  PubMed  Google Scholar 

  10. Meckel S, Reisinger C, Bremerich J, Damm D, Wolbers M, Engelter S, Scheffler K, Wetzel SG (2010) Cerebral venous thrombosis: diagnostic accuracy of combined, dynamic and static, contrast-enhanced 4D MR venography. AJNR Am J Neuroradiol 31(3):527–535. doi:10.3174/ajnr.A1869

    Article  PubMed  CAS  Google Scholar 

  11. Hingwala DR, Thomas B, Kesavadas C, Kapilamoorthy TR (2011) Suboptimal contrast opacification of dynamic head and neck MR angiography due to venous stasis and reflux: technical considerations for optimization. AJNR Am J Neuroradiol 32(2):310–314. doi:10.3174/ajnr.A2301

    Article  PubMed  CAS  Google Scholar 

  12. Lee YJ, Chung TS, Joo JY, Chien D, Laub G (1999) Suboptimal contrast-enhanced carotid MR angiography from the left brachiocephalic venous stasis. J Magn Reson Imaging JMRI 10(4):503–509

    Article  CAS  Google Scholar 

  13. Yeh EL, Pohlman GP, Ruetz PP, Meade RC (1976) Jugular venous reflux in cerebral radionuclide angiography. Radiology 118(3):730–732

    PubMed  CAS  Google Scholar 

  14. You SY, Yoon DY, Choi CS, Chang SK, Yun EJ, Seo YL, Lee YJ, Moon JH (2007) Effects of right- versus left-arm injections of contrast material on computed tomography of the head and neck. J Comput Assist Tomogr 31(5):677–681. doi:10.1097/RCT.0b013e318038d8fb

    Article  PubMed  Google Scholar 

  15. Lefournier V, Martinie M, Vasdev A, Bessou P, Passagia JG, Labat-Moleur F, Sturm N, Bosson JL, Bachelot I, Chabre O (2003) Accuracy of bilateral inferior petrosal or cavernous sinuses sampling in predicting the lateralization of Cushing's disease pituitary microadenoma: influence of catheter position and anatomy of venous drainage. J Clin Endocrinol Metab 88(1):196–203

    Article  PubMed  CAS  Google Scholar 

  16. Kaskarelis IS, Tsatalou EG, Benakis SV, Malagari K, Komninos I, Vassiliadi D, Tsagarakis S, Thalassinos N (2006) Bilateral inferior petrosal sinuses sampling in the routine investigation of Cushing's syndrome: a comparison with MRI. AJR Am J Roentgenol 187(2):562–570. doi:10.2214/AJR.05.0557

    Article  PubMed  Google Scholar 

  17. Meckel S, Lovblad KO, Abdo G, Ruiz DS, Delavelle J, Radue EW, Ruefenacht DA, Wetzel SG (2005) Arterialization of cerebral veins on dynamic MDCT angiography: a possible sign of a dural arteriovenous fistula. AJR Am J Roentgenol 184(4):1313–1316. doi:10.2214/ajr.184.4.01841313

    Article  PubMed  Google Scholar 

  18. Meckel S, Maier M, Ruiz DS, Yilmaz H, Scheffler K, Radue EW, Wetzel SG (2007) MR angiography of dural arteriovenous fistulas: diagnosis and follow-up after treatment using a time-resolved 3D contrast-enhanced technique. AJNR Am J Neuroradiol 28(5):877–884

    PubMed  CAS  Google Scholar 

  19. Chung CP, Hsu HY, Chao AC, Chang FC, Sheng WY, Hu HH (2006) Detection of intracranial venous reflux in patients of transient global amnesia. Neurology 66(12):1873–1877. doi:10.1212/01.wnl.0000219620.69618.9d

    Article  PubMed  Google Scholar 

  20. Cejas C, Cisneros LF, Lagos R, Zuk C, Ameriso SF (2010) Internal jugular vein valve incompetence is highly prevalent in transient global amnesia. Stroke J Cereb Circ 41(1):67–71. doi:10.1161/STROKEAHA.109.566315

    Article  Google Scholar 

  21. Sakamoto M, Taoka T, Iwasaki S, Nakagawa H, Fukusumi A, Takayama K, Wada T, Kichikawa K (2004) Paradoxical parasellar high signals resembling shunt diseases on routine 3D time-of-flight MR angiography of the brain: mechanism for the signals and differential diagnosis from shunt diseases. Magn Reason Imaging 22(9):1289–1293. doi:10.1016/j.mri.2004.08.004

    Article  Google Scholar 

  22. Kudo K, Terae S, Ishii A, Omatsu T, Asano T, Tha KK, Miyasaka K (2004) Physiologic change in flow velocity and direction of dural venous sinuses with respiration: MR venography and flow analysis. AJNR Am J Neuroradiol 25(4):551–557

    PubMed  Google Scholar 

  23. Schaller B (2004) Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Res Brain Res Rev 46(3):243–260. doi:10.1016/j.brainresrev.2004.04.005

    Article  PubMed  CAS  Google Scholar 

  24. Watanabe K, Kakeda S, Watanabe R, Ohnari N, Korogi Y (2012) Normal flow signal of the pterygoid plexus on 3T MRA in patients without DAVF of the cavernous sinus. AJNR American Journal of Neuroradiology. doi:10.3174/ajnr.A3377

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Young Byun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, J., Kim, Bs., Kim, By. et al. Reflux venous flow in dural sinus and internal jugular vein on 3D time-of-flight MR angiography. Neuroradiology 55, 1205–1211 (2013). https://doi.org/10.1007/s00234-013-1239-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-013-1239-5

Keywords

Navigation