Advertisement

Neuroradiology

, Volume 55, Issue 10, pp 1189–1196 | Cite as

Intravoxel incoherent motion diffusion-weighted MR imaging of gliomas: feasibility of the method and initial results

  • Sotirios Bisdas
  • Tong San Koh
  • Constantin Roder
  • Christian Braun
  • Jens Schittenhelm
  • Ulrike Ernemann
  • Uwe Klose
Diagnostic Neuroradiology

Abstract

Introduction

The purpose of this study was to evaluate the feasibility of intravoxel incoherent motion (IVIM) imaging and its value in differentiating the histologic grade among human gliomas.

Methods

The IVIM model generated parametric images for apparent diffusion coefficient ADC, slow diffusion coefficient D (or D slow), fast diffusion coefficient D* (or D fast), and fractional perfusion-related volume f in 22 patients with gliomas (WHO grade II–IV) using monopolar Stejskal–Tanner diffusion-weighted imaging (DWI) scheme and 14 b values ranging from 0 s/mm2 to a maximum of 1,300 s/mm2. A region-of-interest analysis on the tumor as well as in the white matter was conducted. The parameter values were tested for significant differences. The repeatability of the measurements was tested by coefficient of variation and Bland–Altman plots.

Results

D, D*, and f in the high-grade gliomas demonstrated significant differences compared to the healthy white matter. D* and f showed a significant difference between low- and high-grade gliomas. D tended to be slightly lower in the WHO grade II compared to WHO grade III–IV tumors. f and D* demonstrated higher coefficients of variation than the ADC and D in tumor. The Bland–Altman plots demonstrated satisfactory results without any outliers outside the mean ± 1.96 standard deviation.

Conclusion

The IVIM-fitted post-processing of DWI-signal decay in human gliomas could show significantly different values of fractional perfusion-related volume and fast diffusion coefficient between low- and high-grade tumors, which might enable a noninvasive WHO grading in vivo.

Keywords

Gliomas Diffusion-weighted imaging Perfusion 

Notes

Conflict of interest

We declare that we have no conflict of interest.

References

  1. 1.
    Le Bihan D, Breton E, Lallemand D et al (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505PubMedGoogle Scholar
  2. 2.
    Luciani A, Vignaud A, Cavet M et al (2008) Liver cirrhosis: intravoxel incoherent motion MR imaging–pilot study. Radiology 249:891–899PubMedCrossRefGoogle Scholar
  3. 3.
    Lemke A, Laun FB, Klauss M et al (2009) Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol 44:769–775PubMedCrossRefGoogle Scholar
  4. 4.
    Maier SE, Bogner P, Bajzik G et al (2001) Normal brain and brain tumor: multicomponent apparent diffusion coefficient line scan imaging. Radiology 219:842–849PubMedGoogle Scholar
  5. 5.
    Bennett KM, Schmainda KM, Bennett RT et al (2003) Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med 50:727–734PubMedCrossRefGoogle Scholar
  6. 6.
    Lee JH, Springer CS Jr (2003) Effects of equilibrium exchange on diffusion-weighted NMR signals: the diffusigraphic "shutter-speed". Magn Reson Med 49:450–458PubMedCrossRefGoogle Scholar
  7. 7.
    Federau C, Maeder P, O’Brien K et al (2012) Quantitative measurement of brain perfusion with intravoxel incoherent motion MR imaging. Radiology 265:874–881PubMedCrossRefGoogle Scholar
  8. 8.
    Bennett KM, Hyde JS, Schmainda KM (2006) Water diffusion heterogeneity index in the human brain is insensitive to the orientation of applied magnetic field gradients. Magn Reson Med 56:235–239PubMedCrossRefGoogle Scholar
  9. 9.
    Lemke A, Stieltjes B, Schad LR et al (2011) Toward an optimal distribution of b values for intravoxel incoherent motion imaging. Magn Reson Imaging 29:766–776PubMedCrossRefGoogle Scholar
  10. 10.
    Leenders KL, Perani D, Lammertsma AA et al (1990) Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain: J Neurol 113(Pt 1):27–47CrossRefGoogle Scholar
  11. 11.
    Pekar J, Moonen CT, van Zijl PC (1992) On the precision of diffusion/perfusion imaging by gradient sensitization. Magn Reson Med 23:122–129PubMedCrossRefGoogle Scholar
  12. 12.
    Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407PubMedGoogle Scholar
  13. 13.
    Pang Y, Turkbey B, Bernardo M, et al. (2012) Intravoxel incoherent motion MR imaging for prostate cancer: an evaluation of perfusion fraction and diffusion coefficient derived from different b-value combinations. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine. doi: 10.1002/mrm.24277
  14. 14.
    Higano S, Yun X, Kumabe T et al (2006) Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology 241:839–846PubMedCrossRefGoogle Scholar
  15. 15.
    Sadeghi N, Camby I, Goldman S et al (2003) Effect of hydrophilic components of the extracellular matrix on quantifiable diffusion-weighted imaging of human gliomas: preliminary results of correlating apparent diffusion coefficient values and hyaluronan expression level. AJR Am J Roentgenol 181:235–241PubMedCrossRefGoogle Scholar
  16. 16.
    Braithwaite AC, Dale BM, Boll DT et al (2009) Short- and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology 250:459–465PubMedCrossRefGoogle Scholar
  17. 17.
    Sigmund EE, Vivier PH, Sui D et al (2012) Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology 263:758–769PubMedCrossRefGoogle Scholar
  18. 18.
    Vargova L, Homola A, Zamecnik J et al (2003) Diffusion parameters of the extracellular space in human gliomas. Glia 42:77–88PubMedCrossRefGoogle Scholar
  19. 19.
    Wirestam R, Borg M, Brockstedt S et al (2001) Perfusion-related parameters in intravoxel incoherent motion MR imaging compared with CBV and CBF measured by dynamic susceptibility-contrast MR technique. Acta radiologica 42:123–128PubMedCrossRefGoogle Scholar
  20. 20.
    Wirestam R, Brockstedt S, Lindgren A et al (1997) The perfusion fraction in volunteers and in patients with ischaemic stroke. Acta Radiol 38:961–964PubMedGoogle Scholar
  21. 21.
    Muller MF, Prasad PV, Edelman RR (1998) Can the IVIM model be used for renal perfusion imaging? Eur J Radiol 26:297–303PubMedCrossRefGoogle Scholar
  22. 22.
    Knutsson L, Ståhlberg F, Wirestam R (2010) Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. MAGMA 23:1–21PubMedCrossRefGoogle Scholar
  23. 23.
    Petersen ET, Zimine I, Ho YC et al (2006) Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 79:688–701PubMedCrossRefGoogle Scholar
  24. 24.
    Bisdas S (2013) Are we ready to image the incoherent molecular motion in our minds? Neuroradiology 55:537–540PubMedCrossRefGoogle Scholar
  25. 25.
    Henkelman RM (1990) Does IVIM measure classical perfusion? Magn Reson Med 16:470–475PubMedCrossRefGoogle Scholar
  26. 26.
    Le Bihan D, Turner R (1992) The capillary network: a link between IVIM and classical perfusion. Magn Reson Med 27:171–178PubMedCrossRefGoogle Scholar
  27. 27.
    Moteki T, Horikoshi H (2006) Evaluation of hepatic lesions and hepatic parenchyma using diffusion-weighted echo-planar MR with three values of gradient b-factor. J Magn Reson Imaging 24:637–645PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sotirios Bisdas
    • 1
  • Tong San Koh
    • 2
  • Constantin Roder
    • 3
  • Christian Braun
    • 4
  • Jens Schittenhelm
    • 5
  • Ulrike Ernemann
    • 1
  • Uwe Klose
    • 1
  1. 1.Department of Diagnostic and Interventional NeuroradiologyEberhard Karls UniversityTübingenGermany
  2. 2.Department of Oncologic ImagingNational Cancer CenterSingaporeSingapore
  3. 3.Department of NeurosurgeryEberhard Karls UniversityTübingenGermany
  4. 4.Department of NeurologyEberhard Karls UniversityTübingenGermany
  5. 5.Department of NeuropathologyEberhard Karls UniversityTübingenGermany

Personalised recommendations