Skip to main content

Advertisement

Log in

Relationship between diabetes mellitus with dural arteriovenous fistula

  • Interventional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The aetiology of dural arteriovenous fistula (DAVF) is not well known, but it has been suggested that abnormality in angiogenesis plays a pathological role. Abnormality in angiogenesis is also involved in diabetes mellitus (DM). The purpose of this study was to quantify the relation between DAVF and DM in a Korean population.

Methods

Medical records of 192 patients with DAVF between 2002 and 2011 were reviewed. Age, sex and the presence of DM, hypertension, hyperlipidaemia, stroke, coronary artery disease and cancers were compared between DAVF and control subjects. Data for control were obtained from the Korean National Health and Nutrition Examination Survey. The relationship of DM and DAVF location, presenting symptoms (benign vs. aggressive) and classification (Borden and Geibprasert) were assessed using the Pearson’s chi-square test.

Results

Prevalence of DM was higher in DAVF patients (19.8 %) than in controls (9.5 %; p = 0.004). Univariate analysis showed that DM (odds ratio (OR), 2.356; 95 % confidence interval (CI), 1.634–3.399; p < 0.001) and age (OR, 1.022; 95 % CI, 1.012–1.032; p < 0.001) increased the odds of DAVF. This was supported by multivariate analysis (DM: OR, 2.092; 95 % CI, 1.391–3.145; p = 0.0004 and Age: OR, 1.021; 95 % CI, 1.009–1.033; p = 0.001). When these analyses were repeated after stratification by sex, there was no relation between age and DAVF in men. Borden II and III (p = 0.038) and aggressive symptoms (p = 0.023) were related to DM.

Conclusion

There was a positive relation between DM and DAVF in a Korean population. DAVFs with aggressive symptoms and behaviour were more commonly related to DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    Article  PubMed  Google Scholar 

  2. Golden SH (2011) Emerging therapeutic approaches for the management of diabetes mellitus and macrovascular complications. Am J Cardiol 108:59B–67B

    Article  CAS  PubMed  Google Scholar 

  3. Edwards MS, Wilson DB, Craven TE et al (2005) Associations between retinal microvascular abnormalities and declining renal function in the elderly population: the Cardiovascular Health Study. Am J Kidney Dis 46:214–224

    Article  PubMed  Google Scholar 

  4. Jeerakathil T, Johnson JA, Simpson SH, Majumdar SR (2007) Short-term risk for stroke is doubled in persons with newly treated type 2 diabetes compared with persons without diabetes: a population-based cohort study. Stroke 38:1739–1743

    Article  PubMed  Google Scholar 

  5. Martin A, Komada MR, Sane DC (2003) Abnormal angiogenesis in diabetes mellitus. Med Res Rev 23:117–145

    Article  CAS  PubMed  Google Scholar 

  6. Aminoff MJ (1973) Vascular anomalies in the intracranial dura mater. Brain 96:601–612

    Article  CAS  PubMed  Google Scholar 

  7. Lasjaunias P, Chiu M, ter Brugge K, Tolia A, Hurth M, Bernstein M (1986) Neurological manifestations of intracranial dural arteriovenous malformations. J Neurosurg 64:724–730

    Article  CAS  PubMed  Google Scholar 

  8. Davies MA, Saleh J, ter Brugge K, Willinsky R, Wallace MC (1997) The natural history and management of intracranial dural arteriovenous fistulae. Part 1: benign lesions. Interv Neuroradiol 3:295–302

    CAS  PubMed  Google Scholar 

  9. Davies MA, ter Brugge K, Willinsky R, Coyne T, Saleh J, Wallace MC (1996) The validity of classification for the clinical presentation of intracranial dural arteriovenous fistulas. J Neurosurg 85:830–837

    Article  CAS  PubMed  Google Scholar 

  10. Geibprasert S, Krings T, Pereira V, Pongpech S, Piske R, Lasjaunias P (2009) Clinical characteristics of dural arteriovenous shunts in 446 patients of three different ethnicities. Interv Neuroradiol 15:395–400

    CAS  PubMed  Google Scholar 

  11. Satomi J, van Dijk JM, ter Brugge K, Willinsky RA, Wallace MC (2002) Benign cranial dural arteriovenous fistulas: outcome of conservative management based on the natural history of the lesion. J Neurosurg 97:767–770

    Google Scholar 

  12. Choi BS, Park JW, Kim JL et al (2011) Treatment strategy based on multimodal management outcome of cavernous sinus dural arteriovenous fistula (CSDAVF). Neurointervention 6:6–12

    Article  PubMed  Google Scholar 

  13. Houser OW, Campbell JK, Campbell RJ, Sundt TM Jr (1979) Arteriovenous malformation affecting the transverse dural venous sinus—an acquired lesion. Mayo Clin Proc 54:651–661

    CAS  PubMed  Google Scholar 

  14. Chaudhary MY, Sachdev VP, Cho SH, Weitzner I Jr, Puljic S, Huang YP (1982) Dural arteriovenous malformation of the major venous sinuses: an acquired lesion. AJNR Am J Neuroradiol 3:13–19

    CAS  PubMed  Google Scholar 

  15. Uranishi R, Nakase H, Sakaki T (1999) Expression of angiogenic growth factors in dural arteriovenous fistula. J Neurosurg 91:781–786

    Article  CAS  PubMed  Google Scholar 

  16. Kurata A, Miyasaka Y, Oka H et al (1999) Spontaneous carotid cavernous fistulas with special reference to the influence of estradiol decrease. Neurol Res 21:631–639

    CAS  PubMed  Google Scholar 

  17. Geibprasert S, Pereira V, Krings T et al (2008) Dural arteriovenous shunts: a new classification of craniospinal epidural venous anatomical bases and clinical correlations. Stroke 39:2783–2794

    Article  PubMed  Google Scholar 

  18. Terada T, Tsuura M, Komai N et al (1996) The role of angiogenic factor bFGF in the development of dural AVFs. Acta Neurochir (Wien) 138:877–883

    Article  CAS  Google Scholar 

  19. Tirakotai W, Bertalanffy H, Liu-Guan B, Farhoud A, Sure U (2005) Immunohistochemical study in dural arteriovenous fistulas and possible role of local hypoxia for the de novo formation of dural arteriovenous fistulas. Clin Neurol Neurosurg 107:455–460

    Article  PubMed  Google Scholar 

  20. Borden JA, Wu JK, Shucart WA (1995) A proposed classification for spinal and cranial dural arteriovenous fistulous malformations and implications for treatment. J Neurosurg 82:166–179

    Article  CAS  PubMed  Google Scholar 

  21. Lasjaunias P, Berenstein A, ter Brugge K (2006) Surgical neuroangiography 3: clinical and interventional aspects in children. Springer, Berlin

    Google Scholar 

  22. Lasjaunias P, ter Brugge K, Chiu M (1985) Dural AVM. Neurosurgery 16:435–436

    Article  CAS  PubMed  Google Scholar 

  23. Van Dijk JM, ter Brugge K, Willinsky RA, Farb RI, Wallace MC (2002) Multidisciplinary management of spinal dural arteriovenous fistulas: clinical presentation and long-term follow-up in 49 patients. Stroke 33:1578–1583

    Google Scholar 

  24. Awad IA, Little JR, Akarawi WP, Ahl J (1990) Intracranial dural arteriovenous malformations: factors predisposing to an aggressive neurological course. J Neurosurg 72:839–850

    Article  CAS  PubMed  Google Scholar 

  25. Willinsky R, ter Brugge K, Lasjaunias P, Montanera W (1990) The variable presentations of craniocervical and cervical dural arteriovenous malformations. Surg Neurol 34:118–123

    Article  CAS  PubMed  Google Scholar 

  26. Korean Ministry of Health and Welfare. Korea Health Statistics 2010: Korea National Health and Nutrition Examination Survey (KNHANES V-1). Korea: Korean Ministry of Health and Welfare, 2011

  27. Bae YS, Park KY, Lee JW, Kim DJ, Kim DI, Huh SK (2008) Therapeutic results of intracrainal dural arteriovenous fistula. Korean J Cerebrovasc Surg 10:496–501

    Google Scholar 

  28. Blann AD, Belgore FM, McCollum CN, Silverman S, Lip PL, Lip GY (2002) Vascular endothelial growth factor and its receptor, Flt-1, in the plasma of patients with coronary or peripheral atherosclerosis, or Type II diabetes. Clin Sci (Lond) 102:187–194

    Article  CAS  Google Scholar 

  29. Xia P, Aiello LP, Ishii H et al (1996) Characterization of vascular endothelial growth factor’s effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J Clin Invest 98:2018–2026

    Article  CAS  PubMed  Google Scholar 

  30. Simon M, Grone HJ, Johren O et al (1995) Expression of vascular endothelial growth factor and its receptors in human renal ontogenesis and in adult kidney. Am J Physiol 268:F240–F250

    CAS  PubMed  Google Scholar 

  31. Cooper ME, Vranes D, Youssef S et al (1999) Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes. Diabetes 48:2229–2239

    Article  CAS  PubMed  Google Scholar 

  32. Zimering MB, Eng J (1996) Increased basic fibroblast growth factor-like substance in plasma from a subset of middle-aged or elderly male diabetic patients with microalbuminuria or proteinuria. J Clin Endocrinol Metab 81:4446–4452

    Article  CAS  PubMed  Google Scholar 

  33. Preissner KT, Kanse SM, Hammes HP (1997) Integrin chatter and vascular function in diabetic retinopathy. Horm Metab Res 29:643–645

    Article  CAS  PubMed  Google Scholar 

  34. Suh DC, Lee JH, Kim SJ et al (2005) New concept in cavernous sinus dural arteriovenous fistula: correlation with presenting symptom and venous drainage patterns. Stroke 36:1134–1139

    Article  PubMed  Google Scholar 

  35. Hamada Y, Goto K, Inoue T et al (1997) Histopathological aspects of dural arteriovenous fistulas in the transverse-sigmoid sinus region in nine patients. Neurosurgery 40:452–456, discussion 456–458

    CAS  PubMed  Google Scholar 

  36. Cognard C, Gobin YP, Pierot L et al (1995) Cerebral dural arteriovenous fistulas: clinical and angiographic correlation with a revised classification of venous drainage. Radiology 194:671–680

    CAS  PubMed  Google Scholar 

  37. Miyachi S, Izumi T, Matsubara N, Naito T, Haraguchi K, Wakabayashi T (2011) Mechanism of the formation of dural arteriovenous fistula: the role of the emissary vein. Interv Neuroradiol 17:195–202

    Google Scholar 

  38. Satomi J, Satoh K (2008) Epidemiology and etiology of dural arteriovenous fistula. Brain Nerve 60:883–886

    PubMed  Google Scholar 

  39. Cognard C, Casasco A, Toevi M, Houdart E, Chiras J, Merland JJ (1998) Dural arteriovenous fistulas as a cause of intracranial hypertension due to impairment of cranial venous outflow. J Neurol Neurosurg Psychiatry 65:308–316

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the assistance of Sun Moon Whang for patient data collection and statistical assistance of Min-ju Kim from the Department of Clinical Epidemiology and Biostatistics of Asan Medical Center.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae Chul Suh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, DG., Zhao, L.B., Shim, J.H. et al. Relationship between diabetes mellitus with dural arteriovenous fistula. Neuroradiology 55, 1129–1134 (2013). https://doi.org/10.1007/s00234-013-1221-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-013-1221-2

Keywords

Navigation