Skip to main content
Log in

Prognostic value of brain proton MR spectroscopy and diffusion tensor imaging in newborns with hypoxic-ischemic encephalopathy treated by brain cooling

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

MRI, proton magnetic resonance spectroscopy (1H-MRS), and diffusion tensor imaging (DTI) have been shown to be of great prognostic value in term newborns with moderate–severe hypoxic-ischemic encephalopathy (HIE). Currently, no data are available on 1H-MRS and DTI performed in the subacute phase after hypothermic treatment. The aim of the present study was to assess their prognostic value in newborns affected by moderate–severe HIE and treated with selective brain cooling (BC).

Methods

Twenty infants treated with BC underwent conventional MRI and 1H-MRS at a mean (SD) age of 8.3 (2.8) days; 15 also underwent DTI. Peak area ratios of metabolites and DTI variables, namely mean diffusivity (MD), axial and radial diffusivity, and fractional anisotropy (FA), were calculated. Clinical outcome was monitored until 2 years of age.

Results

Adverse outcome was observed in 6/20 newborns. Both 1H-MRS and DTI variables showed higher prognostic accuracy than conventional MRI. N-acetylaspartate/creatine at a basal ganglia localisation showed 100 % PPV and 93 % NPV for outcome. MD showed significantly decreased values in many regions of white and gray matter, axial diffusivity showed the best predictive value (PPV and NPV) in the genu of corpus callosum (100 and 91 %, respectively), and radial diffusivity was significantly decreased in fronto white matter (FWM) and fronto parietal (FP) WM. The decrement of FA showed the best AUC (0.94) in the FPWM.

Conclusion

Selective BC in HIE neonates does not affect the early and accurate prognostic value of 1H-MRS and DTI, which outperform conventional MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Azzopardi DV, Strohm B, Edwards AD et al (2009) Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med 361:1349–1358

    Article  PubMed  CAS  Google Scholar 

  2. Gluckman PD, Wyatt JS, Azzopardi D et al (2005) Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomized trial. Lancet 365:663–670

    PubMed  Google Scholar 

  3. Simbruner G, Mittal RA, Rohlmann F et al (2010) Systemic hypothermia after neonatal encephalopathy: outcomes of neo.nEURO.network RCT. Pediatrics 126:771–778

    Article  Google Scholar 

  4. Boichot C, Walker PM, Durand C et al (2006) Term neonate prognoses after perinatal asphyxia: contributions of MR imaging, MR spectroscopy relaxation times and apparent diffusion coefficients. Radiology 239:839–848

    Article  PubMed  Google Scholar 

  5. Chau V, Poskitt KJ, Miller SP (2009) Advanced neuroimaging techniques for the term newborn with encephalopathy. Pediatr Neurol 40:181–188

    Article  PubMed  Google Scholar 

  6. Rutherford M, Srinivasan L, Dyet L et al (2006) Magnetic resonance imaging in perinatal brain injury: clinical presentation, lesions and outcome. Pediatr Radiol 36:582–592

    Article  PubMed  Google Scholar 

  7. Barkovich AJ, Baranski K, Vigneron D et al (1999) Proton MR spectroscopy for the evaluation of brain injury in asphyxiated term neonates. AJNR Am J Neuroradiol 20:1399–1405

    PubMed  CAS  Google Scholar 

  8. Ancora G, Soffritti S, Lodi R et al (2010) A combined a-EEG and MR spectroscopy study in term newborns with hypoxic-ischemic encephalopathy. Brain Dev 32:835–842

    Article  PubMed  Google Scholar 

  9. Zarifi MK, Astrakas LG, Poussaint TY et al (2002) Prediction of adverse outcome with cerebral lactate level and apparent diffusion coefficient in infants with perinatal asphyxia. Radiology 225:859–870

    Article  PubMed  CAS  Google Scholar 

  10. Sotak CH (2000) The role of diffusion tensor imaging in the evaluation of ischemic brain injury—a review. NMR Biomed 15:561–569

    Article  Google Scholar 

  11. Barkovich AJ, Westmark KD, Bedi HS et al (2001) Proton spectroscopy and diffusion imaging on the first day of life after perinatal asphyxia: preliminary report. AJNR Am J Neuroradiol 22:1786–1794

    PubMed  CAS  Google Scholar 

  12. McKinstry RC, Miller JH, Snyder AZ et al (2002) A prospective, longitudinal diffusion tensor imaging study of brain injury in newborns. Neurology 59:824–833

    Article  PubMed  CAS  Google Scholar 

  13. Sarnat HB, Sarnat MS (1976) Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol 33:696–705

    Article  PubMed  CAS  Google Scholar 

  14. Barkovich AJ, Hajnal BL, Vigneron D et al (1998) Prediction of neuromotor outcome in perinatal asphyxia: evaluation of MR scoring systems. Am J Neuroradiol 19:143–149

    PubMed  CAS  Google Scholar 

  15. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    Article  PubMed  CAS  Google Scholar 

  16. Dehaene-Lambertz G, Dehaene S, Hertz-Pannier L (2002) Functional neuroimaging of speech perception in infants. Science 298:2013–2015 and Supporting Online Material: www.sciencemag.org/cgi/content/full/298/5600/2013/DC1

    Google Scholar 

  17. Dubois J, Hertz-Pannier L, Cachia A, Mangin JF, Le Bihan D, Dehaene-Lambertz G (2009) Structural asymmetries in the infant language and sensori-motor networks. Cerebral Cortex 19:414–423

    Article  PubMed  CAS  Google Scholar 

  18. Huntley M (1996) The Griffiths Mental Development Scales, 1996 revision. The Test Agency, Henley

    Google Scholar 

  19. Hagberg B, Hagberg G, Olow I et al (1996) The changing panorama of cerebral palsy in Sweden. VII: Prevalence and origin in the birth year period 1987–90. Acta Paediatr 85:954–560

    Article  PubMed  CAS  Google Scholar 

  20. Bednarek N, Mathur A, Inder T et al (2012) Impact of therapeutic hypothermia on MRI diffusion changes in neonatal encephalopathy. Neurology 78(18):1420–1427

    Article  PubMed  CAS  Google Scholar 

  21. Gunn AJ, Wyatt JS, Whitelaw A et al (2008) Therapeutic hypothermia changes the prognostic value of clinical evaluation of neonatal encephalopathy. J Pediatr 152:55–58

    Article  PubMed  Google Scholar 

  22. Ancora G, Maranella E, Grandi S et al (2013) Early predictors of short term neurodevelopmental outcome in asphyxiated cooled infants. A combined brain amplitude integrated electroencephalography and near infrared spectroscopy study Brain Dev 35(1):26–31

    Google Scholar 

  23. Thoresen M, Hellström-Westas L, Liu X et al (2010) Effect of hypothermia on amplitude-integrated electroencephalogram in infants with asphyxia. Pediatrics 126:131–139

    Article  Google Scholar 

  24. Rutherford M, Ramenghi LA, Edwards AD et al (2010) Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic-ischaemic encephalopathy: a nested substudy of a randomised controlled trial. Lancet Neurol 9:39–45

    Article  PubMed  Google Scholar 

  25. Robertson NJ, Lewis RH, Cowan FM et al (2001) Early increases in brain myo-inositol measured by proton magnetic resonance spectroscopy in term infants with neonatal encephalopathy. Pediatr Res 50:692–700

    Article  PubMed  CAS  Google Scholar 

  26. Azzopardi DV, Edwards AD (2010) Magnetic resonance biomarkers of neuroprotective effects in infants with hypoxic ischemic encephalopathy. Semin Fetal Neonatal Med 15:261–269

    Article  PubMed  Google Scholar 

  27. Chan KW, Chow AM, Chan KC et al (2010) Magnetic resonance spectroscopy of the brain under mild hypothermia indicates changes in neuroprotection-related metabolites. Neurosci Lett 475:150–155

    Article  PubMed  CAS  Google Scholar 

  28. Wolf RL, Zimmerman RA, Clancy R et al (2001) Quantitative apparent diffusion coefficient measurements in term neonates for early detection of hypoxic-ischemic brain injury: initial experience. Radiology 218:825–833

    PubMed  CAS  Google Scholar 

  29. Barkovich AJ, Miller SP, Bartha A et al (2006) MR imaging, MR spectroscopy, and diffusion tensor imaging of sequential studies in neonates with encephalopathy. AJNR Am J Neuroradiol 27:533–547

    PubMed  CAS  Google Scholar 

  30. Sun SW, Liang HF, Cross AH et al (2008) Evolving Wallerian degeneration after transient retinal ischemia in mice characterized by diffusion tensor imaging. NeuroImage 40:1–10

    Article  PubMed  CAS  Google Scholar 

  31. Wang S, Wu EX, Cai K et al (2009) Mild hypoxic-ischemic injury in the neonatal rat brain: longitudinal evaluation of white matter using diffusion tensor MR imaging. AJNR Am J Neuroradiol 30:1907–1913

    Article  PubMed  CAS  Google Scholar 

  32. Porter EJ, Counsell SJ, Edwards AD et al (2010) Tract-based spatial statistics of magnetic resonance images to assess disease and treatment effects in perinatal asphyxial encephalopathy. Pediatr Res 68:205–209

    Article  PubMed  Google Scholar 

  33. Tusor N, Wusthoff C, Smee N et al (2012) Prediction of neurodevelopmental outcome after hypoxic-ischemic encephalopathy treated with hypothermia by diffusion tensor imaging analyzed using tract-based spatial statistics. Pediatr Res 72(1):63–69

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ancora.

Additional information

G. Ancora and C. Testa contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ancora, G., Testa, C., Grandi, S. et al. Prognostic value of brain proton MR spectroscopy and diffusion tensor imaging in newborns with hypoxic-ischemic encephalopathy treated by brain cooling. Neuroradiology 55, 1017–1025 (2013). https://doi.org/10.1007/s00234-013-1202-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-013-1202-5

Keywords

Navigation