Skip to main content

Advertisement

Log in

Spinal cord stimulation modulates cerebral neurobiology: a proton magnetic resonance spectroscopy study

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Although spinal cord stimulation (SCS) is a widely used treatment for chronic neuropathic pain secondary to spinal surgery, little is known about the underlying physiological mechanisms.

Methods

The primary aim of this study is to investigate the neural substrate underlying short-term SCS by means of 1H MR spectroscopy with short echo time, in 20 patients with failed back surgery syndrome.

Results

Marked increase of γ-aminobutyric acid (GABA) and decrease in glucose in the ipsilateral thalamus were found between baseline situation without SCS and after 9′ of SCS, indicating the key role of the ipsilateral thalamus as a mediator of chronic neuropathic pain. In addition, this study also showed a progressive decrease in glucose in the ipsilateral thalamus over time, which is in line with the findings of previous studies reporting deactivation in the ipsilateral thalamic region.

Conclusions

The observation of GABA increase and glucose decrease over time in the ipsilateral thalamus may be the causal mechanism of the pain relief due to SCS or an epiphenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kelly GA, Blake C, Power CK, O’Keeffe D, Fullen BM (2012) The impact of spinal cord stimulation on physical function and sleep quality in individuals with failed back surgery syndrome: a systematic review. Eur J Pain 16(6):793–802. doi:10.1002/j.1532-2149.2011.00092.x

    Article  PubMed  CAS  Google Scholar 

  2. Sears NC, Machado AG, Nagel SJ, Deogaonkar M, Stanton-Hicks M, Rezai AR, Henderson JM (2011) Long-term outcomes of spinal cord stimulation with paddle leads in the treatment of complex regional pain syndrome and failed back surgery syndrome. Neuromodulation 14(4):312–318. doi:10.1111/j.1525-1403.2011.00372.x, discussion 318

    Article  PubMed  Google Scholar 

  3. Abeloos L, De Witte O, Riquet R, Tuna T, Mathieu N (2011) [Long-term outcome of patients treated with spinal cord stimulation for therapeutically refractory failed back surgery syndrome: a retrospective study]. Neurochirurgie 57(3):114–119. doi:10.1016/j.neuchi.2011.07.001

    Article  PubMed  CAS  Google Scholar 

  4. Mekhail N, Wentzel DL, Freeman R, Quadri H (2011) Counting the costs: case management implications of spinal cord stimulation treatment for failed back surgery syndrome. Prof Case Manag 16(1):27–36. doi:10.1097/NCM.0b013e3181e9263c

    PubMed  Google Scholar 

  5. Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, Molet J, Thomson S, O’Callaghan J, Eisenberg E, Milbouw G, Buchser E, Fortini G, Richardson J, North RB (2008) The effects of spinal cord stimulation in neuropathic pain are sustained: a 24-month follow-up of the prospective randomized controlled multicenter trial of the effectiveness of spinal cord stimulation. Neurosurgery 63(4):762–770. doi:10.1227/01.NEU.0000325731.46702.D9, discussion 770

    Article  PubMed  Google Scholar 

  6. Kemler MA, Barendse GA, van Kleef M, de Vet HC, Rijks CP, Furnee CA, van den Wildenberg FA (2000) Spinal cord stimulation in patients with chronic reflex sympathetic dystrophy. N Engl J Med 343(9):618–624. doi:10.1056/NEJM200008313430904

    Article  PubMed  CAS  Google Scholar 

  7. Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, Molet J, Thomson S, O’Callaghan J, Eisenberg E, Milbouw G, Buchser E, Fortini G, Richardson J, North RB (2007) Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain 132(1–2):179–188. doi:10.1016/j.pain.2007.07.028

    Article  PubMed  Google Scholar 

  8. North RB, Kumar K, Wallace MS, Henderson JM, Shipley J, Hernandez J, Mekel-Bobrov N, Jaax KN (2011) Spinal cord stimulation versus re-operation in patients with failed back surgery syndrome: an international multicenter randomized controlled trial (EVIDENCE study). Neuromodulation 14(4):330–335. doi:10.1111/j.1525-1403.2011.00371.x, discussion 335-336

    Article  PubMed  Google Scholar 

  9. Schechtmann G, Song Z, Ultenius C, Meyerson BA, Linderoth B (2008) Cholinergic mechanisms involved in the pain relieving effect of spinal cord stimulation in a model of neuropathy. Pain 139(1):136–145. doi:10.1016/j.pain.2008.03.023

    Article  PubMed  CAS  Google Scholar 

  10. Barchini J, Tchagchagian S, Shamaa F, Jabbur SJ, Meyerson BA, Song Z, Linderoth B, Saade NE (2012) Spinal segmental and supraspinal mechanisms underlying the pain-relieving effects of spinal cord stimulation: an experimental study in a rat model of neuropathy. Neuroscience. doi:10.1016/j.neuroscience.2012.04.057

    PubMed  Google Scholar 

  11. Grachev ID, Ramachandran TS, Thomas PS, Szeverenyi NM, Fredrickson BE (2003) Association between dorsolateral prefrontal N-acetyl aspartate and depression in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. J Neural Transm 110(3):287–312. doi:10.1007/s00702-002-0781-9

    Article  PubMed  CAS  Google Scholar 

  12. Grachev ID, Fredrickson BE, Apkarian AV (2000) Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. Pain 89(1):7–18

    Article  PubMed  CAS  Google Scholar 

  13. Gussew A, Rzanny R, Gullmar D, Scholle HC, Reichenbach JR (2011) 1H-MR spectroscopic detection of metabolic changes in pain processing brain regions in the presence of non-specific chronic low back pain. NeuroImage 54(2):1315–1323. doi:10.1016/j.neuroimage.2010.09.039

    Article  PubMed  Google Scholar 

  14. Grachev ID, Thomas PS, Ramachandran TS (2002) Decreased levels of N-acetylaspartate in dorsolateral prefrontal cortex in a case of intractable severe sympathetically mediated chronic pain (complex regional pain syndrome, type I). Brain Cogn 49(1):102–113. doi:10.1006/brcg.2001

    Article  PubMed  Google Scholar 

  15. Foerster BR, Petrou M, Edden RA, Sundgren PC, Schmidt-Wilcke T, Lowe SE, Harte SE, Clauw DJ, Harris RE (2012) Reduced insular gamma-aminobutyric acid in fibromyalgia. Arthritis Rheum 64(2):579–583. doi:10.1002/art.33339

    Article  PubMed  CAS  Google Scholar 

  16. Grachev ID, Fredrickson BE, Apkarian AV (2002) Brain chemistry reflects dual states of pain and anxiety in chronic low back pain. J Neural Transm 109(10):1309–1334. doi:10.1007/s00702-002-0722-7

    Article  PubMed  CAS  Google Scholar 

  17. Feraco P, Bacci A, Pedrabissi F, Passamonti L, Zampogna G, Malavolta N, Leonardi M (2011) Metabolic abnormalities in pain-processing regions of patients with fibromyalgia: a 3T MR spectroscopy study. AJNR Am J Neuroradiol 32(9):1585–1590. doi:10.3174/ajnr.A2550

    Article  PubMed  CAS  Google Scholar 

  18. Harris RE, Clauw DJ (2012) Imaging central neurochemical alterations in chronic pain with proton magnetic resonance spectroscopy. Neurosci Lett. doi:10.1016/j.neulet.2012.03.042

    PubMed  Google Scholar 

  19. Pattany PM, Yezierski RP, Widerstrom-Noga EG, Bowen BC, Martinez-Arizala A, Garcia BR, Quencer RM (2002) Proton magnetic resonance spectroscopy of the thalamus in patients with chronic neuropathic pain after spinal cord injury. AJNR Am J Neuroradiol 23(6):901–905

    PubMed  Google Scholar 

  20. Van Seventer R, Vos C, Meerding W, Mear I, Le Gal M, Bouhassira D, Huygen FJ (2010) Linguistic validation of the DN4 for use in international studies. Eur J Pain 14(1):58–63. doi:10.1016/j.ejpain.2009.01.005

    Article  PubMed  Google Scholar 

  21. van Seventer R, Vos C, Giezeman M, Meerding WJ, Arnould B, Regnault A, van Eerd M, Martin C, Huygen F (2012) Validation of the Dutch Version of the DN4 Diagnostic Questionnaire for Neuropathic Pain. Pain Pract. doi:10.1111/papr.12006

    PubMed  Google Scholar 

  22. Moens M, Droogmans S, Spapen H, De Smedt A, Brouns R, Van Schuerbeek P, Luypaert R, Poelaert J, Nuttin B (2012) Feasibility of cerebral magnetic resonance imaging in patients with externalised spinal cord stimulator. Clin Neurol Neurosurg 114(2):135–141. doi:10.1016/j.clineuro.2011.09.013

    Article  PubMed  Google Scholar 

  23. Moens M, Sunaert S, Marien P, Brouns R, De Smedt A, Droogmans S, Van Schuerbeek P, Peeters R, Poelaert J, Nuttin B (2012) Spinal cord stimulation modulates cerebral function: an fMRI study. Neuroradiology. doi:10.1007/s00234-012-1087-8

    PubMed  Google Scholar 

  24. Cui JG, O’Connor WT, Ungerstedt U, Linderoth B, Meyerson BA (1997) Spinal cord stimulation attenuates augmented dorsal horn release of excitatory amino acids in mononeuropathy via a GABAergic mechanism. Pain 73(1):87–95

    Article  PubMed  CAS  Google Scholar 

  25. Cui JG, Meyerson BA, Sollevi A, Linderoth B (1998) Effect of spinal cord stimulation on tactile hypersensitivity in mononeuropathic rats is potentiated by simultaneous GABA(B) and adenosine receptor activation. Neurosci Lett 247(2–3):183–186

    Article  PubMed  CAS  Google Scholar 

  26. Guan Y, Wacnik PW, Yang F, Carteret AF, Chung CY, Meyer RA, Raja SN (2010) Spinal cord stimulation-induced analgesia: electrical stimulation of dorsal column and dorsal roots attenuates dorsal horn neuronal excitability in neuropathic rats. Anesthesiology 113(6):1392–1405. doi:10.1097/ALN.0b013e3181fcd95c

    Article  PubMed  Google Scholar 

  27. Smits H, Ultenius C, Deumens R, Koopmans GC, Honig WM, van Kleef M, Linderoth B, Joosten EA (2006) Effect of spinal cord stimulation in an animal model of neuropathic pain relates to degree of tactile "allodynia". Neuroscience 143(2):541–546. doi:10.1016/j.neuroscience.2006.08.007

    Article  PubMed  CAS  Google Scholar 

  28. Smits H, Kleef MV, Honig W, Gerver J, Gobrecht P, Joosten EA (2009) Spinal cord stimulation induces c-Fos expression in the dorsal horn in rats with neuropathic pain after partial sciatic nerve injury. Neurosci Lett 450(1):70–73. doi:10.1016/j.neulet.2008.11.013

    Article  PubMed  CAS  Google Scholar 

  29. Song Z, Ultenius C, Meyerson BA, Linderoth B (2009) Pain relief by spinal cord stimulation involves serotonergic mechanisms: an experimental study in a rat model of mononeuropathy. Pain 147(1-3):241–248. doi:10.1016/j.pain.2009.09.020

    Article  PubMed  CAS  Google Scholar 

  30. Song Z, Meyerson BA, Linderoth B (2011) Spinal 5-HT receptors that contribute to the pain-relieving effects of spinal cord stimulation in a rat model of neuropathy. Pain 152(7):1666–1673. doi:10.1016/j.pain.2011.03.012

    Article  PubMed  CAS  Google Scholar 

  31. Barchini J, Tchachaghian S, Shamaa F, Jabbur SJ, Meyerson BA, Song Z, Linderoth B, Saade NE (2012) Spinal segmental and supraspinal mechanisms underlying the pain-relieving effects of spinal cord stimulation: an experimental study in a rat model of neuropathy. Neuroscience 215:196–208. doi:10.1016/j.neuroscience.2012.04.057

    Article  PubMed  CAS  Google Scholar 

  32. Nagamachi S, Fujita S, Nishii R, Futami S, Wakamatsu H, Yano T, Kodama T, Tamura S, Kunitake A, Uno T, Takasaki M (2006) Alteration of regional cerebral blood flow in patients with chronic pain—evaluation before and after epidural spinal cord stimulation. Ann Nucl Med 20(4):303–310

    Article  PubMed  Google Scholar 

  33. Kishima H, Saitoh Y, Oshino S, Hosomi K, Ali M, Maruo T, Hirata M, Goto T, Yanagisawa T, Sumitani M, Osaki Y, Hatazawa J, Yoshimine T (2010) Modulation of neuronal activity after spinal cord stimulation for neuropathic pain; H(2)15O PET study. NeuroImage 49(3):2564–2569. doi:10.1016/j.neuroimage.2009.10.054

    Article  PubMed  Google Scholar 

  34. Clavo B, Robaina F, Montz R, Carames MA, Otermin E, Carreras JL (2008) Effect of cervical spinal cord stimulation on cerebral glucose metabolism. Neurol Res 30(6):652–654. doi:10.1179/174313208X305373

    Article  PubMed  Google Scholar 

  35. Stancak A, Kozak J, Vrba I, Tintera J, Vrana J, Polacek H, Stancak M (2008) Functional magnetic resonance imaging of cerebral activation during spinal cord stimulation in failed back surgery syndrome patients. Eur J Pain 12(2):137–148. doi:10.1016/j.ejpain.2007.03.003

    Article  PubMed  Google Scholar 

  36. Kiriakopoulos ET, Tasker RR, Nicosia S, Wood ML, Mikulis DJ (1997) Functional magnetic resonance imaging: a potential tool for the evaluation of spinal cord stimulation: technical case report. Neurosurgery 41(2):501–504

    Article  PubMed  CAS  Google Scholar 

  37. Rasche D, Siebert S, Stippich C, Kress B, Nennig E, Sartor K, Tronnier VM (2005) Spinal cord stimulation in failed-back-surgery-syndrome. Preliminary study for the evaluation of therapy by functional magnetic resonance imaging (fMRI). Schmerz 19(6):497–500. doi:10.1007/s00482-005-0388-9, 502-495

    Article  PubMed  CAS  Google Scholar 

  38. Noback CR (2005) The human nervous system : structure and function, 6th edn. Humana, Totowa

    Google Scholar 

  39. Lippincott Williams & Wilkins (2011) Professional guide to pathophysiology, 3rd edn. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  40. Young PA, Young PH, Tolbert DL (2008) Basic clinical neuroscience, 2nd edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  41. Wall PD, McMahon SB, Koltzenburg M (2006) Wall and Melzack’s textbook of pain, 5th edn. Elsevier/Churchill Livingstone, Philadelphia

    Google Scholar 

  42. Chen Z, Silva AC, Yang J, Shen J (2005) Elevated endogenous GABA level correlates with decreased fMRI signals in the rat brain during acute inhibition of GABA transaminase. J Neurosci Res 79(3):383–391. doi:10.1002/jnr.20364

    Article  PubMed  CAS  Google Scholar 

  43. Muthukumaraswamy SD, Edden RA, Jones DK, Swettenham JB, Singh KD (2009) Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc Natl Acad Sci U S A 106(20):8356–8361. doi:10.1073/pnas.0900728106

    Article  PubMed  CAS  Google Scholar 

  44. Northoff G, Walter M, Schulte RF, Beck J, Dydak U, Henning A, Boeker H, Grimm S, Boesiger P (2007) GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nat Neurosci 10(12):1515–1517. doi:10.1038/nn2001

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ursule Van de Velde and Cindy Tettelin for their help in data management.

Conflict of interest

MM is a clinical investigator of The Research Foundation Flanders (FWO) and received the Lyrica Independent Investigator Research Award (LIIRA); he has received consultancy or speaker honoraria from Medtronic and Pfizer. RB has received consultancy or speaker honoraria from Pfizer, Medtronic, Shire Human Genetics Therapies, Sanofi-Aventis and Bayer. BN has received grants for research, education, and travel from Medtronic Inc, and holds a Chair for Neurosurgery for Psychiatric Disorders, funded by a donation from Medtronic Inc.; he has received grants from OT, FWO, IWT-3WIN, and SBO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten Moens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moens, M., Mariën, P., Brouns, R. et al. Spinal cord stimulation modulates cerebral neurobiology: a proton magnetic resonance spectroscopy study. Neuroradiology 55, 1039–1047 (2013). https://doi.org/10.1007/s00234-013-1200-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-013-1200-7

Keywords

Navigation