Skip to main content

Advertisement

Log in

The effects of propofol on cerebral perfusion MRI in children

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The effects of anesthesia are infrequently considered when interpreting pediatric perfusion magnetic resonance imaging (MRI). The objectives of this study were to test for measurable differences in MR measures of cerebral blood flow (CBF) and cerebral blood volume (CBV) between non-sedated and propofol-sedated children, and to identify influential factors.

Methods

Supratentorial cortical CBF and CBV measured by dynamic susceptibility contrast perfusion MRI in 37 children (1.8–18 years) treated for infratentorial brain tumors receiving propofol (IV, n = 19) or no sedation (NS, n = 18) were compared between groups and correlated with age, hematocrit (Hct), end-tidal CO2 (ETCO2), dose, weight, and history of radiation therapy (RT). The model most predictive of CBF and CBV was identified by multiple linear regression.

Results

Anterior cerebral artery (ACA) and middle cerebral artery (MCA) territory CBF were significantly lower, and MCA territory CBV greater (p = 0.03), in IV than NS patients (p = 0.01, 0.04). The usual trend of decreasing CBF with age was reversed with propofol in ACA and MCA territories (r = 0.53, r = 0.47; p < 0.05). ACA and MCA CBF (r = 0.59, 0.49; p < 0.05) and CBV in ACA, MCA, and posterior cerebral artery territories (r = 0.73, 0.80, 0.52; p < 0.05) increased with weight in propofol-sedated children, with no significant additional influence from age, ETCO2, hematocrit, or RT.

Conclusion

In propofol-sedated children, usual age-related decreases in CBF were reversed, and increases in CBF and CBV were weight-dependent, not previously described. Weight-dependent increases in propofol clearance may diminish suppression of CBF and CBV. Prospective study is required to establish anesthetic-specific models of CBF and CBV in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hakyemez B et al (2005) High-grade and low-grade gliomas: differentiation by using perfusion MR imaging. Clin Radiol 60(4):493–502

    Article  PubMed  CAS  Google Scholar 

  2. Tsien C et al (2010) Parametric response map as an imaging biomarker to distinguish progression from pseudoprogression in high-grade glioma. J Clin Oncol 28(13):2293–2299

    Article  PubMed  CAS  Google Scholar 

  3. Lobel U et al (2011) Quantitative diffusion-weighted and dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging analysis of T2 hypointense lesion components in pediatric diffuse intrinsic pontine glioma. AJNR Am J Neuroradiol 32(2):315–322

    Article  PubMed  CAS  Google Scholar 

  4. Heiland S, Wick W, Bendszus M (2010) Perfusion magnetic resonance imaging for parametric response maps in tumors: is it really that easy? J Clin Oncol 28(29):591–592

    Article  Google Scholar 

  5. Salluzzi M, Frayne R, Smith MR (2006) Is correction necessary when clinically determining quantitative cerebral perfusion parameters from multi-slice dynamic susceptibility contrast MR studies? Phys Med Biol 51(2):407–424

    Article  PubMed  CAS  Google Scholar 

  6. Calamante F (2010) Perfusion MRI using dynamic-susceptibility contrast MRI: quantification issues in patient studies. Top Magn Reson Imaging 21(2):75–85

    Article  PubMed  Google Scholar 

  7. Miller RD, Eriksson LI, Fleisher LA, Wiener-Kronish JP, Young WL (eds) (2010) Miller’s Anesthesia, vol I, 7th edn. Churchill Livingstone Elsevier, Inc, Philadelphia. ISBN 978-0-443-06959-8

    Google Scholar 

  8. Szabo EZ, Luginbuehl I, Bissonnette B (2009) Impact of anesthetic agents on cerebrovascular physiology in children. Paediatr Anaesth 19(2):108–118

    Article  PubMed  Google Scholar 

  9. Barthel H et al (1997) Age-specific cerebral perfusion in 4- to 15-year-old children: a high-resolution brain SPET study using 99mTc-ECD. Eur J Nucl Med 24(10):1245–1252

    Article  PubMed  CAS  Google Scholar 

  10. Biagi L et al (2007) Age dependence of cerebral perfusion assessed by magnetic resonance continuous arterial spin labeling. J Magn Reson Imaging 25(4):696–702

    Article  PubMed  Google Scholar 

  11. Ogawa A et al (1989) Regional cerebral blood flow with age: changes in rCBF in childhood. Neurol Res 11(3):173–176

    PubMed  CAS  Google Scholar 

  12. Chiron C et al (1992) Changes in regional cerebral blood flow during brain maturation in children and adolescents. J Nucl Med 33(5):696–703

    PubMed  CAS  Google Scholar 

  13. Ogawa Y et al (2010) The different effects of midazolam and propofol sedation on dynamic cerebral autoregulation. Anesth Analg 111(5):1279–1284

    Article  PubMed  CAS  Google Scholar 

  14. Schlunzen L et al (2012) Regional cerebral blood flow and glucose metabolism during propofol anaesthesia in healthy subjects studied with positron emission tomography. Acta Anaesthesiol Scand 56(2):248–255

    Article  PubMed  CAS  Google Scholar 

  15. Rigby-Jones AE, Sneyd JR (2011) Propofol and children–what we know and what we do not know. Paediatr Anaesth 21(3):247–254

    Article  PubMed  Google Scholar 

  16. Shangguan WN et al (2006) Pharmacokinetics of a single bolus of propofol in chinese children of different ages. Anesthesiology 104(1):27–32

    Article  PubMed  CAS  Google Scholar 

  17. Wang C et al (2012) A bodyweight-dependent allometric exponent for scaling clearance across the human life-span. Pharm Res 29(6):1570–1581

    Article  PubMed  CAS  Google Scholar 

  18. Matta BF et al (1999) Direct cerebral vasodilatory effects of sevoflurane and isoflurane. Anesthesiology 91(3):677–680

    Article  PubMed  CAS  Google Scholar 

  19. Cenic A et al (2002) Cerebral blood volume and blood flow responses to hyperventilation in brain tumors during isoflurane or propofol anesthesia. Anesth Analg 94(3):661–6

    Article  PubMed  CAS  Google Scholar 

  20. Sury MR, Smith JH (2008) Deep sedation and minimal anesthesia. Paediatr Anaesth 18(1):18–24

    PubMed  Google Scholar 

  21. Jain JJ, Glass JO, Reddick WE (2007) Automated arterial input function identification using self organized maps, in SPIE International Symposium on Medical Imaging. Imaging Processing Conference, San Diego, CA, pp 2–17

    Google Scholar 

  22. Sourbron S et al (2004) Choice of the regularization parameter for perfusion quantification with MRI. Phys Med Biol 49(14):3307–3324

    Article  PubMed  CAS  Google Scholar 

  23. Hansen CP (1994) Regularization tools: a matlab package for analysis and solution of discrete ill-posed problems. Numer Algorithms 6(1):1–35

    Article  Google Scholar 

  24. Calamante F et al (1999) Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 19(7):701–735

    Article  PubMed  CAS  Google Scholar 

  25. Calamante F, Gadian DG, Connelly A (2002) Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke 33(4):1146–1151

    Article  PubMed  CAS  Google Scholar 

  26. Reddick WE et al (1997) Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks. IEEE Trans Med Imaging 16(6):911–918

    Article  PubMed  CAS  Google Scholar 

  27. Glass JO et al (2004) Improving the segmentation of therapy-induced leukoencephalopathy in children with acute lymphoblastic leukemia using a priori information and a gradient magnitude threshold. Magn Reson Med 52(6):1336–1341

    Article  PubMed  Google Scholar 

  28. Blumenfeld H (2011) Neuroanatomy Through Clinical Cases. 2nd ed: Sinauer Associates, Inc

  29. Kaisti KK et al (2003) Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology 99(3):603–613

    Article  PubMed  CAS  Google Scholar 

  30. Lee MC et al (2005) Dynamic susceptibility contrast perfusion imaging of radiation effects in normal-appearing brain tissue: changes in the first-pass and recirculation phases. J Magn Reson Imaging 21(6):683–693

    Article  PubMed  Google Scholar 

  31. Fuss M et al (2000) Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrence. Int J Radiat Oncol Biol Phys 48(1):53–58

    Article  PubMed  CAS  Google Scholar 

  32. Leenders KL et al (1990) Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113(Pt 1):27–47

    Article  PubMed  Google Scholar 

  33. Rempp KA et al (1994) Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 193(3):637–641

    PubMed  CAS  Google Scholar 

  34. Sakai F et al (1985) Regional cerebral blood volume and hematocrit measured in normal human volunteers by single-photon emission computed tomography. J Cereb Blood Flow Metab 5(2):207–213

    Article  PubMed  CAS  Google Scholar 

  35. Ziegelitz D et al (2009) Absolute quantification of cerebral blood flow in neurologically normal volunteers: dynamic-susceptibility contrast MRI-perfusion compared with computed tomography (CT)-perfusion. Magn Reson Med 62(1):56–65

    Article  PubMed  Google Scholar 

  36. van Osch MJ, van der Grond J, Bakker CJ (2005) Partial volume effects on arterial input functions: shape and amplitude distortions and their correction. J Magn Reson Imaging 22(6):704–709

    Article  PubMed  Google Scholar 

  37. Helton KJ et al (2009) Arterial spin-labeled perfusion combined with segmentation techniques to evaluate cerebral blood flow in white and gray matter of children with sickle cell anemia. Pediatr Blood Cancer 52(1):85–91

    Article  PubMed  Google Scholar 

  38. Han JS et al (2011) Measurement of cerebrovascular reactivity in pediatric patients with cerebral vasculopathy using blood oxygen level-dependent MRI. Stroke 42(5):1261–1269

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by Grant no. CA21765 from the National Cancer Institute and by the American Lebanese Syrian Associated Charities.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie H. Harreld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harreld, J.H., Helton, K.J., Kaddoum, R.N. et al. The effects of propofol on cerebral perfusion MRI in children. Neuroradiology 55, 1049–1056 (2013). https://doi.org/10.1007/s00234-013-1187-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-013-1187-0

Keywords

Navigation