Skip to main content

Advertisement

Log in

Bilateral pre- and postcentral gyrus volume positively correlates with T2-SNR of putamen in healthy adults

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The aim of the present study was to investigate the correlation between local gray matter volume and signal-to-noise ratio on T2-weighted imaging (T2-SNR) of putamen in healthy adults using two tools: voxel-based morphometry (VBM) treating age as a confounding covariate to control for age-related gray matter volume changes and high spatial resolution T1-weighted imaging acquired with a 3.0-T magnetic resonance (3T-MR) scanner.

Methods

Contiguous sagittal T1-weighted images and axial T2-weighted images of the brain were obtained from 1,380 healthy participants. T2-SNR of putamen was defined as A/B, where A is the mean T2-weighted signal intensity (T2-SI) in the right and left sides of putamen, and B is the background noise. The software Statistical Parametric Mapping 5 was used for image segmentation. The association between T2-SNR of putamen and gray matter volume was assessed with VBM, treating age as a confounding covariate.

Results

A significant positive correlation was obtained between T2-SNR of putamen and bilateral pre- and postcentral gyrus volume.

Conclusion

To the best of our knowledge, this is the first VBM study to show an age-independent relationship between T2-SNR of putamen and bilateral pre- and postcentral gyrus volumes in healthy adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ogg RJ, Steen RG (1998) Age-related changes in brain T1 are correlated with iron concentration. Magn Reson Med 40:749–753

    Article  PubMed  CAS  Google Scholar 

  2. Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51

    Article  PubMed  CAS  Google Scholar 

  3. Haacke EM, Cheng NY, House MJ et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23:1–25

    Article  PubMed  CAS  Google Scholar 

  4. Xu X, Wang Q, Zhang M (2008) Age, gender, and hemispheric differences in iron deposition in the human brain: an in vivo MRI study. Neuroimage 40:35–42

    Article  PubMed  CAS  Google Scholar 

  5. Bartzokis G, Mintz J, Sultzer D et al (1994) In vivo MR evaluation of age-related increases in brain iron. AJNR Am J Neuroradiol 15:1129–1138

    PubMed  CAS  Google Scholar 

  6. Beard JL, Connor JR, Jones BC (1993) Iron in the brain. Nutr Rev 51:157–170

    Article  PubMed  CAS  Google Scholar 

  7. Sachdev P (1993) The neuropsychiatry of brain iron. J Neuropsychiatry Clin Neurosci 5:18–29

    PubMed  CAS  Google Scholar 

  8. Grundke-Iqbal I, Fleming J, Tung YC et al (1990) Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia. Acta Neuropathol 81:105–110

    Article  PubMed  CAS  Google Scholar 

  9. Connor JR, Menzies SL, St Martin SM et al (1992) A histochemical study of iron, transferrin, and ferritin in Alzheimer's diseased brains. J Neurosci Res 31:75–83

    Article  PubMed  CAS  Google Scholar 

  10. Ehmann WD, Markesbery WR, Alauddin M et al (1986) Brain trace elements in Alzheimer's disease. Neurotoxicology 7:195–206

    PubMed  CAS  Google Scholar 

  11. Parsey RV, Krishnan KR (1998) Quantitative analysis of T2 signal intensities in Alzheimer's disease. Psychiatry Res 82:181–185

    Article  PubMed  CAS  Google Scholar 

  12. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11:805–821

    Article  PubMed  CAS  Google Scholar 

  13. Baron JC, Chetelat G, Desgranges B et al (2001) In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease. Neuroimage 14:298–309

    Article  PubMed  CAS  Google Scholar 

  14. Keller SS, Roberts N (2008) Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature. Epilepsia 49:741–757

    Article  PubMed  Google Scholar 

  15. Musen G, Lyoo IK, Sparks CR et al (2006) Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry. Diabetes 55:326–333

    Article  PubMed  CAS  Google Scholar 

  16. Hayano F, Nakamura M, Asami T et al (2009) Smaller amygdala is associated with anxiety in patients with panic disorder. Psychiatry Clin Neurosci 63:266–276

    Article  PubMed  Google Scholar 

  17. Leube DT, Weis S, Freymann K et al (2008) Neural correlates of verbal episodic memory in patients with MCI and Alzheimer's disease—a VBM study. Int J Geriatr Psychiatry 23:1114–1118

    Article  PubMed  Google Scholar 

  18. Maguire EA, Gadian DG, Johnsrude IS et al (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A 97:4398–4403

    Article  PubMed  CAS  Google Scholar 

  19. Hackert VH, den Heijer T, Oudkerk M et al (2002) Hippocampal head size associated with verbal memory performance in nondemented elderly. Neuroimage 17:1365–1372

    Article  PubMed  CAS  Google Scholar 

  20. Folstein MF, Folstein SE, McHugh PR (1975) "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  21. Fazekas F, Chawluk JB, Alavi A et al (1987) MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J Roentgenol 149:351–356

    PubMed  CAS  Google Scholar 

  22. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851

    Article  PubMed  Google Scholar 

  23. Aquino D, Bizzi A, Grisoli M et al (2009) Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology 252:165–172

    Article  PubMed  Google Scholar 

  24. Sullivan EV, Adalsteinsson E, Rohlfing T et al (2009) Relevance of iron deposition in deep gray matter brain structures to cognitive and motor performance in healthy elderly men and women: exploratory findings. Brain Imaging Behav 3:167–175

    Article  PubMed  Google Scholar 

  25. Kemp JM, Powell TP (1970) The cortico-striate projection in the monkey. Brain 93:525–546

    Article  PubMed  CAS  Google Scholar 

  26. Kemp JM, Powell TP (1971) The structure of the caudate nucleus of the cat: light and electron microscopy. Philos Trans R Soc Lond B Biol Sci 262:383–401

    Article  PubMed  CAS  Google Scholar 

  27. Jones EG, Coulter JD, Burton H et al (1977) Cells of origin and terminal distribution of corticostriatal fibers arising in the sensory-motor cortex of monkeys. J Comp Neurol 173:53–80

    Article  PubMed  CAS  Google Scholar 

  28. Kwan JY, Jeong SY, Van Gelderen P et al (2012) Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 Tesla MRI and pathology. PLoS One 7:e35241

    Article  PubMed  CAS  Google Scholar 

  29. Schenck JF (2003) Magnetic resonance imaging of brain iron. J Neurol Sci 207:99–102

    Article  PubMed  Google Scholar 

  30. Duyn JH, van Gelderen P, Li TQ et al (2007) High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci U S A 104:11796–11801

    Article  PubMed  CAS  Google Scholar 

  31. Gelman N, Gorell JM, Barker PB et al (1999) MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology 210:759–767

    PubMed  CAS  Google Scholar 

  32. Bartzokis G, Aravagiri M, Oldendorf WH et al (1993) Field dependent transverse relaxation rate increase may be a specific measure of tissue iron stores. Magn Reson Med 29:459–464

    Article  PubMed  CAS  Google Scholar 

  33. Chen NK, Oshio K, Panych LP et al (2004) Spatially selective T2 and T2* measurement with line-scan echo-planar spectroscopic imaging. J Magn Reson 171:90–96

    Article  PubMed  CAS  Google Scholar 

  34. Zywicke HA, van Gelderen P, Connor JR et al (2002) Microscopic R2* mapping of reduced brain iron in the Belgrade rat. Ann Neurol 52:102–105

    Article  PubMed  CAS  Google Scholar 

  35. Kuhlpeter R, Dahnke H, Matuszewski L et al (2007) R2 and R2* mapping for sensing cell-bound superparamagnetic nanoparticles: in vitro and murine in vivo testing. Radiology 245:449–457

    Article  PubMed  Google Scholar 

  36. Drayer B, Burger P, Darwin R et al (1986) MRI of brain iron. AJR Am J Roentgenol 147:103–110

    PubMed  CAS  Google Scholar 

  37. Brooks DJ, Luthert P, Gadian D et al (1989) Does signal-attenuation on high-field T2-weighted MRI of the brain reflect regional cerebral iron deposition? Observations on the relationship between regional cerebral water proton T2 values and iron levels. J Neurol Neurosurg Psychiatry 52:108–111

    Article  PubMed  CAS  Google Scholar 

  38. Aoki S, Okada Y, Nishimura K et al (1989) Normal deposition of brain iron in childhood and adolescence: MR imaging at 1.5 T. Radiology 172:381–385

    PubMed  CAS  Google Scholar 

  39. Siemonsen S, Finsterbusch J, Matschke J et al (2008) Age-dependent normal values of T2* and T2′ in brain parenchyma. AJNR Am J Neuroradiol 29:950–955

    Article  PubMed  CAS  Google Scholar 

  40. Schenker C, Meier D, Wichmann W et al (1993) Age distribution and iron dependency of the T2 relaxation time in the globus pallidus and putamen. Neuroradiology 35:119–124

    Article  PubMed  CAS  Google Scholar 

  41. Drayer BP (1989) Basal ganglia: significance of signal hypointensity on T2-weighted MR images. Radiology 173:311–312

    PubMed  CAS  Google Scholar 

  42. Bizzi A, Brooks RA, Brunetti A et al (1990) Role of iron and ferritin in MR imaging of the brain: a study in primates at different field strengths. Radiology 177:59–65

    PubMed  CAS  Google Scholar 

  43. Peran P, Cherubini A, Luccichenti G et al (2009) Volume and iron content in basal ganglia and thalamus. Hum Brain Mapp 30:2667–2675

    Article  PubMed  Google Scholar 

  44. Rodrigue KM, Haacke EM, Raz N (2011) Differential effects of age and history of hypertension on regional brain volumes and iron. Neuroimage 54:750–759

    Google Scholar 

  45. Imon Y, Yamaguchi S, Katayama S et al (1998) A decrease in cerebral cortex intensity on T2-weighted with ageing images of normal subjects. Neuroradiology 40:76–80

    Article  PubMed  CAS  Google Scholar 

  46. Agartz I, Saaf J, Wahlund LO et al (1991) T1 and T2 relaxation time estimates in the normal human brain. Radiology 181:537–543

    PubMed  CAS  Google Scholar 

  47. Hoult DI, Phil D (2000) Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 12:46–67

    Article  PubMed  CAS  Google Scholar 

  48. Allkemper T, Tombach B, Schwindt W et al (2004) Acute and subacute intracerebral hemorrhages: comparison of MR imaging at 1.5 and 3.0 T—initial experience. Radiology 232:874–881

    Article  PubMed  Google Scholar 

  49. Yao B, Li TQ, Gelderen P et al (2009) Susceptibility contrast in high field MRI of human brain as a function of tissue iron content. Neuroimage 44:1259–1266

    Article  PubMed  Google Scholar 

  50. Duyn JH (2010) Study of brain anatomy with high-field MRI: recent progress. Magn Reson Imaging 28:1210–1215

    Article  PubMed  Google Scholar 

  51. Fukunaga M, Li TQ, van Gelderen P et al (2010) Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proc Natl Acad Sci U S A 107:3834–3839

    Article  PubMed  CAS  Google Scholar 

  52. Shmueli K, de Zwart JA, van Gelderen P et al (2009) Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med 62:1510–1522

    Article  PubMed  Google Scholar 

  53. Takao H, Hayashi N, Ohtomo K (2011) Effect of scanner in longitudinal studies of brain volume changes. J Magn Reson Imaging 34:438–444

    Google Scholar 

  54. Shuter B, Yeh IB, Graham S et al (2008) Reproducibility of brain tissue volumes in longitudinal studies: effects of changes in signal-to-noise ratio and scanner software. Neuroimage 41:371–379

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research on Innovative Areas (Comprehensive Brain Science Network) from the Ministry of Education, Science, Sports and Culture of Japan.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masami Goto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goto, M., Abe, O., Aoki, S. et al. Bilateral pre- and postcentral gyrus volume positively correlates with T2-SNR of putamen in healthy adults. Neuroradiology 55, 245–250 (2013). https://doi.org/10.1007/s00234-012-1126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-012-1126-5

Keywords

Navigation