Skip to main content

Advertisement

Log in

Diffusion-weighted imaging improves prediction in cognitive outcome and clinical phases in patients with carbon monoxide intoxication

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Changes in apparent diffusion coefficient (ADC) values often reflect tissue injury. Use of ADC as a surrogate marker to assess clinical phases has not been systemically applied in patients with carbon monoxide (CO) intoxication.

Methods

Fifty-nine magnetic resonance imaging scans and cognitive evaluations were performed in 47 patients with CO intoxication and compared with 22 sex- and age-matched controls. The patients were further classified into three groups based on the clinical phases, namely, acute (within 2 weeks), delayed neuropsychiatric (2 weeks to 6 months), and chronic (>1 year) groups. The ADC values were measured in 16 regions of interests (ROIs) and correlated with cognitive test scores.

Results

Among the 59 evaluations, 15 were in the acute, 26 in the delayed neuropsychiatric, and 18 in the chronic groups. Among the ROIs, significant elevations of ADC values were found in the corpus callosum and globus pallidus in all three CO phases compared with the controls, and the ADC values were highest in the chronic phases. In contrast, the ADC values in peripheral gray matter and white matter were highest in the delayed neuropsychiatric group. Both globus pallidus and corpus callosum ADC values correlated with multiple cognitive test scores.

Conclusion

Using ADC as a surrogate marker, the globus pallidus and corpus callosum can be considered to be two vulnerable structures in the gray and white matter. Significant differences between ADC values correlated well with clinical phase and cognitive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kuo CJ, Conwell Y, Yu Q et al (2008) Suicide by charcoal burning in Taiwan: implications for means substitution by a case-linkage study. Soc Psychiatry Psychiatr Epidemiol 43(4):286–290

    Article  PubMed  Google Scholar 

  2. O’Donnell P, Buxton PJ, Pitkin A, Jarvis LJ (2000) The magnetic resonance imaging appearances of the brain in acute carbon monoxide poisoning. Clin Radiol 55(4):273–280

    Article  PubMed  Google Scholar 

  3. Chang YT, Chang WN, Huang SH et al (2012) Neuroimaging studies in carbon monoxide intoxication. In: Bright P (ed) Neuroimaging—cognitive and clinical neuroscience. InTech, Slavka Krautzeka, pp 353–374

    Google Scholar 

  4. Weaver LK (2009) Clinical practice. Carbon monoxide poisoning. N Engl J Med 360(12):1217–1225

    Article  PubMed  CAS  Google Scholar 

  5. Chang CC, Chang WN, Lui CC et al (2010) Longitudinal study of carbon monoxide intoxication by diffusion tensor imaging with neuropsychiatric correlation. J Psychiatry Neurosci 35(2):115–125

    Article  PubMed  Google Scholar 

  6. Mascalchi M, Filippi M, Floris R, Fonda C, Gasparotti R, Villari N (2005) Diffusion-weighted MR of the brain: methodology and clinical application. Radiol Med 109(3):155–197

    PubMed  Google Scholar 

  7. Duong TQ, Sehy JV, Yablonskiy DA, Snider BJ, Ackerman JJ, Neil JJ (2001) Extracellular apparent diffusion in rat brain. Magn Reson Med 45(5):801–810

    Article  PubMed  CAS  Google Scholar 

  8. Desmond PM, Lovell AC, Rawlinson AA et al (2001) The value of apparent diffusion coefficient maps in early cerebral ischemia. AJNR Am J Neuroradiol 22(7):1260–1267

    PubMed  CAS  Google Scholar 

  9. Selim M, Fink JN, Kumar S et al (2002) Predictors of hemorrhagic transformation after intravenous recombinant tissue plasminogen activator: prognostic value of the initial apparent diffusion coefficient and diffusion-weighted lesion volume. Stroke 33(8):2047–2052

    Article  PubMed  CAS  Google Scholar 

  10. Gutierrez LG, Rovira A, Portela LA, Leite Cda C, Lucato LT (2010) CT and MR in non-neonatal hypoxic-ischemic encephalopathy: radiological findings with patho-physiological correlations. Neuroradiology 52(11):949–976

    Article  PubMed  Google Scholar 

  11. Chang CC, Chang WN, Lui CC et al (2011) Clinical significance of the pallidoreticular pathway in patients with carbon monoxide intoxication. Brain 134(Pt 12):3632–3646

    Article  PubMed  Google Scholar 

  12. Chang CC, Lee YC, Chang WN et al (2009) Damage of white matter tract correlated with neuropsychological deficits in carbon monoxide intoxication after hyperbaric oxygen therapy. J Neurotrauma 26(8):1263–1270

    Article  PubMed  Google Scholar 

  13. Plum F, Posner JB, Hain RF (1962) Delayed neurological deterioration after anoxia. Arch Intern Med 110:18–25

    Article  PubMed  CAS  Google Scholar 

  14. Penney DG, Helfman CC, Dunbar JC Jr, McCoy LE (1991) Acute severe carbon monoxide exposure in the rat: effects of hyperglycemia and hypoglycemia on mortality, recovery, and neurologic deficit. Can J Physiol Pharmacol 69(8):1168–1177

    Article  PubMed  CAS  Google Scholar 

  15. Lapresle J, Fardeau M (1967) The central nervous system and carbon monoxide poisoning. II. Anatomical study of brain lesions following intoxication with carbon monoxide (22 cases). Prog Brain Res 24:31–74

    Article  PubMed  CAS  Google Scholar 

  16. Wagner KR, Kleinholz M, Myers RE (1989) Delayed neurologic deterioration following anoxia: brain mitochondrial and metabolic correlates. J Neurochem 52(5):1407–1417

    Article  PubMed  CAS  Google Scholar 

  17. Prockop LD, Chichkova RI (2007) Carbon monoxide intoxication: an updated review. J Neurol Sci 262(1–2):122–130

    Article  PubMed  CAS  Google Scholar 

  18. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  PubMed  CAS  Google Scholar 

  19. Amieva H, Lafont S, Rouch-Leroyer I et al (2004) Evidencing inhibitory deficits in Alzheimer’s disease through interference effects and shifting disabilities in the Stroop test. Arch Clin Neuropsychol 19(6):791–803

    Article  PubMed  Google Scholar 

  20. Troyer AK, Moscovitch M, Winocur G (1997) Clustering and switching as two components of verbal fluency: evidence from younger and older healthy adults. Neuropsychology 11(1):138–146

    Article  PubMed  CAS  Google Scholar 

  21. Boone KB (2000) The Boston qualitative scoring system for the Rey-Osterrieth complex figure. J Clin Exp Neuropsychol 22(3):430–434

    Article  PubMed  CAS  Google Scholar 

  22. Chang CC, Kramer JH, Lin KN et al (2010) Validating the Chinese version of the Verbal Learning Test for screening Alzheimer’s disease. J Int Neuropsychol Soc 16(2):244–251

    Article  PubMed  Google Scholar 

  23. Galloway NR, Tong KA, Ashwal S, Oyoyo U, Obenaus A (2008) Diffusion-weighted imaging improves outcome prediction in pediatric traumatic brain injury. J Neurotrauma 25(10):1153–1162

    Article  PubMed  Google Scholar 

  24. Hon KL, Yeung WL, Ho CH et al (2006) Neurologic and radiologic manifestations of three girls surviving acute carbon monoxide poisoning. J Child Neurol 21(9):737–741

    Article  PubMed  Google Scholar 

  25. Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217(2):331–345

    PubMed  CAS  Google Scholar 

  26. Hopkins RO, Woon FL (2006) Neuroimaging, cognitive, and neurobehavioral outcomes following carbon monoxide poisoning. Behav Cogn Neurosci Rev 5(3):141–155

    Article  PubMed  Google Scholar 

  27. Adam J, Baulac M, Hauw JJ, Laplane D, Duyckaerts C (2008) Behavioral symptoms after pallido-nigral lesions: a clinico-pathological case. Neurocase 14(2):125–130

    Article  PubMed  Google Scholar 

  28. Murata T, Kimura H, Kado H et al (2001) Neuronal damage in the interval form of CO poisoning determined by serial diffusion weighted magnetic resonance imaging plus 1H-magnetic resonance spectroscopy. J Neurol Neurosurg Psychiatry 71(2):250–253

    Article  PubMed  CAS  Google Scholar 

  29. Kim JH, Chang KH, Song IC et al (2003) Delayed encephalopathy of acute carbon monoxide intoxication: diffusivity of cerebral white matter lesions. AJNR Am J Neuroradiol 24(8):1592–1597

    PubMed  Google Scholar 

  30. Ginsberg MD, Myers RE, McDonagh BF (1974) Experimental carbon monoxide encephalopathy in the primate. II. Clinical aspects, neuropathology, and physiologic correlation. Arch Neurol 30(3):209–216

    Article  PubMed  CAS  Google Scholar 

  31. Ginsberg MD (1985) Carbon monoxide intoxication: clinical features, neuropathology and mechanisms of injury. J Toxicol Clin Toxicol 23(4–6):281–288

    Article  PubMed  CAS  Google Scholar 

  32. Thom SR, Bhopale VM, Fisher D, Zhang J, Gimotty P (2004) Delayed neuropathology after carbon monoxide poisoning is immune-mediated. Proc Natl Acad Sci USA 101(37):13660–13665

    Article  PubMed  CAS  Google Scholar 

  33. Vieregge P, Klostermann W, Blumm RG, Borgis KJ (1989) Carbon monoxide poisoning: clinical, neurophysiological, and brain imaging observations in acute disease and follow-up. J Neurol 236(8):478–481

    Article  PubMed  CAS  Google Scholar 

  34. Pracyk JB, Stolp BW, Fife CE, Gray L, Piantadosi CA (1995) Brain computerized tomography after hyperbaric oxygen therapy for carbon monoxide poisoning. Undersea Hyperb Med 22(1):1–7

    PubMed  CAS  Google Scholar 

  35. Markowitsch HJ, Calabrese P, Liess J, Haupts M, Durwen HF, Gehlen W (1993) Retrograde amnesia after traumatic injury of the fronto-temporal cortex. J Neurol Neurosurg Psychiatry 56(9):988–992

    Article  PubMed  CAS  Google Scholar 

  36. Bucur B, Madden DJ, Spaniol J et al (2008) Age-related slowing of memory retrieval: contributions of perceptual speed and cerebral white matter integrity. Neurobiol Aging 29(7):1070–1079

    Article  PubMed  Google Scholar 

  37. Hopkins RO, Fearing MA, Weaver LK, Foley JF (2006) Basal ganglia lesions following carbon monoxide poisoning. Brain Inj 20(3):273–281

    Article  PubMed  Google Scholar 

  38. Pulsipher DT, Hopkins RO, Weaver LK (2006) Basal ganglia volumes following CO poisoning: a prospective longitudinal study. Undersea Hyperb Med 33(4):245–256

    PubMed  CAS  Google Scholar 

  39. Terajima K, Igarashi H, Hirose M, Matsuzawa H, Nishizawa M, Nakada T (2008) Serial assessments of delayed encephalopathy after carbon monoxide poisoning using magnetic resonance spectroscopy and diffusion tensor imaging on 3.0T system. Eur Neurol 59(1–2):55–61

    Article  PubMed  Google Scholar 

  40. Pach J, Groszek B, Urbanik A, Chojnacka I, Herman-Sucharska I, Szczepanska L (1998) Neurologic sequelae in severe carbon monoxide poisoning--case report. Przegl Lek 55(10):554–557

    PubMed  CAS  Google Scholar 

  41. Porter SS, Hopkins RO, Weaver LK, Bigler ED, Blatter DD (2002) Corpus callosum atrophy and neuropsychological outcome following carbon monoxide poisoning. Arch Clin Neuropsychol 17(2):195–204

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. T.L. Huang, P.Y. Lin, Y. Lee, and C.H. Lin from the Department of Psychiatry at the Kaohsiung Chang Gung Memorial Hospital and Dr. C.W. Chiang from the Department of Neurology at the Kaohsiung Naval General Hospital for referring the patients with carbon monoxide intoxication. This work was supported in part by grants CMRPG890871 and CMRPG8A0511 from the Chang Gung Memorial Hospital.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiung-Chih Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, NC., Huang, CW., Lui, CC. et al. Diffusion-weighted imaging improves prediction in cognitive outcome and clinical phases in patients with carbon monoxide intoxication. Neuroradiology 55, 107–115 (2013). https://doi.org/10.1007/s00234-012-1102-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-012-1102-0

Keywords

Navigation