Skip to main content

Advertisement

Log in

Comparison of 3D computer-aided with manual cerebral aneurysm measurements in different imaging modalities

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

To compare intra- and inter-observer reliability of aneurysm measurements obtained by a 3D computer-aided technique with standard manual aneurysm measurements in different imaging modalities.

Methods

A total of 21 patients with 29 cerebral aneurysms were studied. All patients underwent digital subtraction angiography (DSA), contrast-enhanced (CE-MRA) and time-of-flight magnetic resonance angiography (TOF-MRA). Aneurysm neck and depth diameters were manually measured by two observers in each modality. Additionally, semi-automatic computer-aided diameter measurements were performed using 3D vessel surface models derived from CE- (CE-com) and TOF-MRA (TOF-com) datasets. Bland–Altman analysis (BA) and intra-class correlation coefficient (ICC) were used to evaluate intra- and inter-observer agreement.

Results

BA revealed the narrowest relative limits of intra- and inter-observer agreement for aneurysm neck and depth diameters obtained by TOF-com (ranging between ±5.3 % and ±28.3 %) and CE-com (ranging between ±23.3 % and ±38.1 %). Direct measurements in DSA, TOF-MRA and CE-MRA showed considerably wider limits of agreement. The highest ICCs were observed for TOF-com and CE-com (ICC values, 0.92 or higher for intra- as well as inter-observer reliability).

Conclusion

Computer-aided aneurysm measurement in 3D offers improved intra- and inter-observer reliability and a reproducible parameter extraction, which may be used in clinical routine and as objective surrogate end-points in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Takao H, Murayama Y, Ishibashi T, Saguchi T, Ebara M, Arakawa H, Irie K, Iwasaki K, Umezu M, Abe T (2010) Comparing accuracy of cerebral aneurysm size measurements from three routine investigations: computed tomography, magnetic resonance imaging, and digital subtraction angiography. Neurol Med Chir (Tokyo) 50(10):893–899

    Article  Google Scholar 

  2. Fahrendorf DM, Goericke SL, Oezkan N, Breyer T, Hussain S, Sandalcioglu EI, Sure U, Forsting M, Gizewski ER (2011) The value of dual-energy CTA for control of surgically clipped aneurysms. Eur Radiol 21(10):2193–2201. doi:10.1007/s00330-011-2147-x

    Article  PubMed  Google Scholar 

  3. Kucukay F, Okten RS, Tekiner A, Dagli M, Gocek C, Bayar MA, Cumhur T (2011) Three-dimensional volume rendering digital subtraction angiography in comparison with two-dimensional digital subtraction angiography and rotational angiography for detecting aneurysms and their morphological properties in patients with subarachnoid hemorrhage. Eur J Radiol. doi:10.1016/j.ejrad.2011.10.006

  4. Lanzman RS, Kropil P, Schmitt P, Bi X, Gliem M, Miese FR, Hanggi D, Kamp M, Scherer A, Turowski B, Blondin D (2011) Nonenhanced ECG-gated time-resolved 4D steady-state free precession (SSFP) MR angiography (MRA) for assessment of cerebral collateral flow: comparison with digital subtraction angiography (DSA). Eur Radiol 21(6):1329–1338. doi:10.1007/s00330-010-2051-9

    Article  PubMed  Google Scholar 

  5. Wiebers DO, Whisnant JP, Huston J 3rd, Meissner I, Brown RD Jr, Piepgras DG, Forbes GS, Thielen K, Nichols D, O’Fallon WM, Peacock J, Jaeger L, Kassell NF, Kongable-Beckman GL, Torner JC (2003) Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362(9378):103–110

    Article  PubMed  Google Scholar 

  6. Fiehler J, Byrne JV (2009) Factors affecting outcome after endovascular treatment of intracranial aneurysms. Curr Opin Neurol 22(1):103–108. doi:10.1097/WCO.0b013e32831af1c1

    Article  PubMed  Google Scholar 

  7. Clarke M (2008) Systematic review of reviews of risk factors for intracranial aneurysms. Neuroradiology 50(8):653–664. doi:10.1007/s00234-008-0411-9

    Article  PubMed  Google Scholar 

  8. Ryu CW, Kwon OK, Koh JS, Kim EJ (2011) Analysis of aneurysm rupture in relation to the geometric indices: aspect ratio, volume, and volume-to-neck ratio. Neuroradiology 53(11):883–889. doi:10.1007/s00234-010-0804-4

    Article  PubMed  Google Scholar 

  9. Fernandez Zubillaga A, Guglielmi G, Vinuela F, Duckwiler GR (1994) Endovascular occlusion of intracranial aneurysms with electrically detachable coils: correlation of aneurysm neck size and treatment results. AJNR Am J Neuroradiol 15(5):815–820

    PubMed  CAS  Google Scholar 

  10. Songsaeng D, Geibprasert S, Ter Brugge KG, Willinsky R, Tymianski M, Krings T (2011) Impact of individual intracranial arterial aneurysm morphology on initial obliteration and recurrence rates of endovascular treatments: a multivariate analysis. J Neurosurg 114(4):994–1002. doi:10.3171/2010.8.JNS10241

    Article  PubMed  Google Scholar 

  11. Suarez JI, Tarr RW, Selman WR (2006) Aneurysmal subarachnoid hemorrhage. N Engl J Med 354(4):387–396. doi:10.1056/NEJMra052732

    Article  PubMed  CAS  Google Scholar 

  12. Ries T, Wegscheider K, Wulff A, Radelfahr K, Saring D, Forkert ND, Fiehler J (2011) Quantification of recurrence volumes after endovascular treatment of cerebral aneurysm as surrogate endpoint for treatment stability. Neuroradiology 53(8):593–598. doi:10.1007/s00234-010-0764-8

    Article  PubMed  Google Scholar 

  13. Daugherty WP, Rad AE, White JB, Meyers PM, Lanzino GL, Cloft HJ, Gordon J, Kallmes DF (2011) Observer agreement regarding the necessity of retreatment of previously coiled recurrent cerebral aneurysms. AJNR Am J Neuroradiol 32(3):566–569. doi:10.3174/ajnr.A2336

    Article  PubMed  CAS  Google Scholar 

  14. Groth M, Fiehler J, Forkert ND (2011) Variability in visual assessment of cerebral aneurysms could be reduced by quantification of recurrence volumes. AJNR Am J Neuroradiol 32(8):E163–E164. doi:10.3174/ajnr.A2685, author reply E165

    Article  PubMed  CAS  Google Scholar 

  15. Cardenes R, Pozo JM, Bogunovic H, Larrabide I, Frangi AF (2011) Automatic aneurysm neck detection using surface Voronoi diagrams. IEEE Trans Med Imaging 30(10):1863–1876. doi:10.1109/TMI.2011.2157698

    Article  PubMed  Google Scholar 

  16. Saring D, Fiehler J, Ries T, Forkert ND (2012) Rigid 3D–3D registration of TOF MRA integrating vessel segmentation for quantification of recurrence volumes after coiling cerebral aneurysm. Neuroradiology 54:171–176. doi:10.1007/s00234-011-0836-4

    Article  PubMed  Google Scholar 

  17. Larrabide I, Cruz Villa-Uriol M, Cardenes R, Pozo JM, Macho J, San Roman L, Blasco J, Vivas E, Marzo A, Hose DR, Frangi AF (2011) Three-dimensional morphological analysis of intracranial aneurysms: a fully automated method for aneurysm sac isolation and quantification. Med Phys 38(5):2439–2449

    Article  PubMed  Google Scholar 

  18. Nael K, Villablanca JP, Mossaz L, Pope W, Juncosa A, Laub G, Finn JP (2008) 3-T contrast-enhanced MR angiography in evaluation of suspected intracranial aneurysm: comparison with MDCT angiography. AJR Am J Roentgenol 190(2):389–395. doi:10.2214/AJR.07.2297

    Article  PubMed  Google Scholar 

  19. Lang J, Wachsmuth W (1979) Praktische Anatomie Band 1. Springer Verlag, Berlin

    Google Scholar 

  20. Fiehler J, Illies T, Piening M, Saring D, Forkert N, Regelsberger J, Grzyska U, Handels H, Byrne JV (2009) Territorial and microvascular perfusion impairment in brain arteriovenous malformations. AJNR Am J Neuroradiol 30(2):356–361. doi:10.3174/ajnr.A1351

    Article  PubMed  CAS  Google Scholar 

  21. Forkert ND, Schmidt-Richberg A, Fiehler J, Illies T, Moller D, Handels H, Saring D (2011) Fuzzy-based vascular structure enhancement in Time-of-Flight MRA images for improved segmentation. Methods Inf Med 50(1):74–83. doi:10.3414/ME10-02-0003

    Article  PubMed  CAS  Google Scholar 

  22. Sato Y, Nakajima S, Shiraga N, Atsumi H, Yoshida S, Koller T, Gerig G, Kikinis R (1998) Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med Image Anal 2(2):143–168

    Article  PubMed  CAS  Google Scholar 

  23. Lorensen W, Cline H (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 21(4):163–169

    Article  Google Scholar 

  24. Fleiss J (1981) Statistical methods for rates and proportions. Wiley & Sons, New York

    Google Scholar 

  25. Groth M, Henes FO, Mullerleile K, Bannas P, Adam G, Regier M (2012) Accuracy of thoracic aortic measurements assessed by contrast enhanced and unenhanced magnetic resonance imaging. Eur J Radiol 81:762–766. doi:10.1016/j.ejrad.2011.01.071

    Article  PubMed  CAS  Google Scholar 

  26. Piotin M, Gailloud P, Bidaut L, Mandai S, Muster M, Moret J, Rufenacht DA (2003) CT angiography, MR angiography and rotational digital subtraction angiography for volumetric assessment of intracranial aneurysms. An experimental study. Neuroradiology 45(6):404–409. doi:10.1007/s00234-002-0922-8

    Article  PubMed  CAS  Google Scholar 

  27. Buhk JH, Kallenberg K, Mohr A, Dechent P, Knauth M (2009) Evaluation of angiographic computed tomography in the follow-up after endovascular treatment of cerebral aneurysms—a comparative study with DSA and TOF-MRA. Eur Radiol 19(2):430–436. doi:10.1007/s00330-008-1171-y

    Article  PubMed  Google Scholar 

  28. Garg SK, Mohan S, Kumar S (2011) Diagnostic value of 3D contrast-enhanced magnetic resonance angiography in Takayasu’s arteritis—a comparative study with digital subtraction angiography. Eur Radiol 21(8):1658–1666. doi:10.1007/s00330-011-2090-x

    Article  PubMed  Google Scholar 

  29. Lauric A, Baharoglu MI, Malek AM (2012) Ruptured status discrimination performance of aspect ratio, height/width and bottleneck factor is highly dependent on aneurysm sizing methodology. Neurosurgery. doi:10.1227/NEU.0b013e3182503bf9

Download references

Conflict of interest

JF has received speakers’ fees from Bayer, Boehringer, Boston Scientific, Bracco, Codman, Cordis, ev3, Micrus, Philips, Sanafi, Siemens and Stryker, and has been financially supported by DFG, EU and BMBF. JHB has received speakers’ fees from Codman. Funding sources had no influence on the acquisition, analysis or interpretation of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Groth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MPG 9808 kb)

ESM 2

(JPEG 121 kb)

High resolution image file (TIFF 16510 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groth, M., Forkert, N.D., Buhk, J.H. et al. Comparison of 3D computer-aided with manual cerebral aneurysm measurements in different imaging modalities. Neuroradiology 55, 171–178 (2013). https://doi.org/10.1007/s00234-012-1095-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-012-1095-8

Keywords

Navigation