Skip to main content

Advertisement

Log in

Sensory neuronopathy involves the spinal cord and brachial plexus: a quantitative study employing multiple-echo data image combination (MEDIC) and turbo inversion recovery magnitude (TIRM)

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Sensory neuronopathy (SNN) is a distinctive subtype of peripheral neuropathies, specifically targeting dorsal root ganglion (DRG). We utilized MRI to demonstrate the imaging characteristics of DRG, spinal cord (SC), and brachial plexus at C7 level in SNN.

Methods

We attempted multiple-echo data image combination (MEDIC) and turbo inversion recovery magnitude (TIRM) methods in nine patients with sensory neuronopathy and compared with those in 16 disease controls and 20 healthy volunteers. All participants underwent MRI for the measurement of DRG, posterior column (PC), lateral column, and spinal cord area (SCA) at C7 level. DRG diameters were obtained through its largest cross section, standardized by dividing sagittal diameter of mid-C7 vertebral canal. We also made comparisons of standardized anteroposterior diameter (APD) and left–right diameters of SC and PC in these groups. Signal intensity and diameter of C7 spinal nerve were assessed on TIRM.

Results

Compared to control groups, signal intensities of DRG and PC were higher in SNN patients when using MEDIC, but the standardized diameters were shorter in either DRG or PC. Abnormal PC signal intensities were identified in eight out of nine SNN patients (89 %) with MEDIC and five out of nine (56 %) with T2-weighted images. SCA, assessed with MEDIC, was smaller in SNN patients than in the other groups, with significant reduction of its standardized APD. C7 nerve root diameters, assessed with TIRM, were decreased in SNN patients.

Conclusion

MEDIC and TIRM sequences demonstrate increased signal intensities and decreased area of DRG and PC, and decreased diameter of nerve roots in patients with SNN, which can play a significant role in early diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Martinez AR, Nunes MB et al (2012) Sensory neuronopathy and autoimmune diseases. Autoimmune Dis 2012:873587

    PubMed  Google Scholar 

  2. Damasceno A, Franca MC Jr et al (2008) Chronic acquired sensory neuron diseases. Eur J Neurol 15(12):1400–1405

    Article  PubMed  CAS  Google Scholar 

  3. Lauria G, Pareyson D et al (2003) Neurophysiological diagnosis of acquired sensory ganglionopathies. Eur Neurol 50(3):146–152

    Article  PubMed  Google Scholar 

  4. Denny-Brown D (1948) Primary sensory neuropathy with muscular changes associated with carcinoma. J Neurol Neurosurg Psychiatry 11(2):73–87

    Article  PubMed  CAS  Google Scholar 

  5. Kuntzer T, Antoine J-C et al (2004) Clinical features and pathophysiological basis of sensory neuronopathies (ganglionopathies). Muscle Nerve 30(3):255–268

    Article  PubMed  Google Scholar 

  6. Sghirlanzoni A, Pareyson D et al (2005) Sensory neuron diseases. Lancet Neurol 4(6):349–361

    Article  PubMed  CAS  Google Scholar 

  7. Krarup-Hansen A, Helweg-Larsen S et al (2007) Neuronal involvement in cisplatin neuropathy: prospective clinical and neurophysiological studies. Brain 130(Pt 4):1076–1088

    PubMed  CAS  Google Scholar 

  8. Sheikh SI, Amato AA (2010) The dorsal root ganglion under attack: the acquired sensory ganglionopathies. Pract Neurol 10(6):326–334

    Article  PubMed  Google Scholar 

  9. Pavlakis PP, Alexopoulos H et al (2012) Peripheral neuropathies in Sjogren's syndrome: a critical update on clinical features and pathogenetic mechanisms. J Autoimmun 39(1–2):27–33

    Article  PubMed  CAS  Google Scholar 

  10. Mori K, Iijima M et al (2005) The wide spectrum of clinical manifestations in Sjogren's syndrome-associated neuropathy. Brain 128:2518–2534

    Article  PubMed  Google Scholar 

  11. Franca MC Jr, D'Abreu A et al (2008) MRI shows dorsal lesions and spinal cord atrophy in chronic sensory neuronopathies. J Neuroimaging 18(2):168–172

    Article  PubMed  Google Scholar 

  12. Walk D (2009) Role of skin biopsy in the diagnosis of peripheral neuropathic pain. Curr Pain Headache Rep 13(3):191–196

    Article  PubMed  Google Scholar 

  13. Lauria G, Sghirlanzoni A et al (2001) Epidermal nerve fiber density in sensory ganglionopathies: clinical and neurophysiologic correlations. Muscle Nerve 24(8):1034–1039

    Article  PubMed  CAS  Google Scholar 

  14. Lauria G, Lombardi R (2012) Small fiber neuropathy: is skin biopsy the holy grail? Curr Diab Rep 12(4):384–392

    Article  PubMed  Google Scholar 

  15. Colli BO, Carlotti CG et al (2008) Dorsal root ganglionectomy for the diagnosis of sensory neuropathies. Surgical technique and results. Surg Neurol 69(3):266–273

    Article  PubMed  Google Scholar 

  16. Asbury AK (1987) Sensory neuronopathy. Semin Neurol 7(1):58–66

    Article  PubMed  CAS  Google Scholar 

  17. Asbury AK, Brown MJ (1990) Sensory neuronopathy and pure sensory neuropathy. Curr Opin Neurol Neurosurg 3:708–711

    Google Scholar 

  18. Camdessanche JP, Jousserand G et al (2009) The pattern and diagnostic criteria of sensory neuronopathy: a case-control study. Brain 132(Pt 7):1723–1733

    Article  PubMed  Google Scholar 

  19. Lauria G, Pareyson D et al (2000) Clinical and magnetic resonance imaging findings in chronic sensory ganglionopathies. Ann Neurol 47(1):104–109

    Article  PubMed  CAS  Google Scholar 

  20. Sobue G, Yasuda T et al (1995) MRI demonstrates dorsal column involvement of the spinal cord in Sjogren's syndrome-associated neuropathy. Neurology 45(3 Pt 1):592–593

    Article  PubMed  CAS  Google Scholar 

  21. Grant GA, Goodkin R et al (2004) MR neurography: diagnostic utility in the surgical treatment of peripheral nerve disorders. Neuroimaging Clin N Am 14(1):115–133

    Article  PubMed  Google Scholar 

  22. Schmid MR, Pfirrmann CW et al (2005) Imaging of patellar cartilage with a 2D multiple-echo data image combination sequence. AJR Am J Roentgenol 184(6):1744–1748

    PubMed  Google Scholar 

  23. Vertinsky AT, Krasnokutsky MV et al (2007) Cutting-edge imaging of the spine. Neuroimaging Clin N Am 17(1):117–136

    Article  PubMed  Google Scholar 

  24. Viallon M, Vargas MI et al (2008) High-resolution and functional magnetic resonance imaging of the brachial plexus using an isotropic 3D T2 STIR (Short Term Inversion Recovery) SPACE sequence and diffusion tensor imaging. Eur Radiol 18(5):1018–1023

    Article  PubMed  CAS  Google Scholar 

  25. Mori K, Koike H et al (2001) Spinal cord magnetic resonance imaging demonstrates sensory neuronal involvement and clinical severity in neuronopathy associated with Sjogren's syndrome. J Neurol Neurosurg Psychiatry 71(4):488–492

    Article  PubMed  CAS  Google Scholar 

  26. Ko HY, Park JH et al (2004) Gross quantitative measurements of spinal cord segments in human. Spinal Cord 42(1):35–40

    Article  PubMed  Google Scholar 

  27. West CA, McKay Hart A et al (2011) Sensory neurons of the human brachial plexus: a quantitative study employing optical fractionation and in-vivo volumetric magnetic resonance imaging. Neurosurgery 70(5):1183–1194, discussion 1194

    Article  Google Scholar 

  28. Okumura R, Asato R et al (1992) Degeneration of the posterior columns of the spinal cord: postmortem MRI and histopathology. J Comput Assist Tomogr 16(6):865–867

    Article  PubMed  CAS  Google Scholar 

  29. Lin CC, Chiu MJ (2008) Teaching neuroimage: cervical cord atrophy with dorsal root ganglionopathy in Sjogren syndrome. Neurology 70(7):e27

    Article  PubMed  Google Scholar 

  30. Koike H, Atsuta N et al (2010) Clinicopathological features of acute autonomic and sensory neuropathy. Brain 133:2881–2896

    Article  PubMed  Google Scholar 

  31. Tavee J, Zhou L (2009) Small fiber neuropathy: a burning problem. Cleve Clin J Med 76(5):297–305

    Article  PubMed  Google Scholar 

  32. Koike H, Sobue G (2008) Small neurons may be preferentially affected in ganglionopathy. J Neurol Neurosurg Psychiatry 79(2):113

    Article  PubMed  Google Scholar 

  33. Kastrup O, Timman D et al (2010) Isolated degeneration of the posterior column as a distinct entity—a clinical and electrophysiologic follow-up study. Clin Neurol Neurosurg 112(3):209–212

    Article  PubMed  CAS  Google Scholar 

  34. Ishikawa M, Matsumoto M et al (2003) Changes of cervical spinal cord and cervical spinal canal with age in asymptomatic subjects. Spinal Cord 41(3):159–163

    Article  PubMed  CAS  Google Scholar 

  35. Zivadinov R, Banas AC et al (2008) Comparison of three different methods for measurement of cervical cord atrophy in multiple sclerosis. AJNR Am J Neuroradiol 29(2):319–325

    Article  PubMed  CAS  Google Scholar 

  36. Lundell H, Barthelemy D et al (2011) Independent spinal cord atrophy measures correlate to motor and sensory deficits in individuals with spinal cord injury. Spinal Cord 49(1):70–75

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Hui Zhang PhD., from the Department of Computer Science and Centre for Medical Image Computing, University College London, UK, for critical comments and helpful suggestions. We also would like to thank Huan Xu for her kind help in revising the manuscript.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-Jun Chen or Dao-Ying Geng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, YF., Tang, WJ., Zhu, DQ. et al. Sensory neuronopathy involves the spinal cord and brachial plexus: a quantitative study employing multiple-echo data image combination (MEDIC) and turbo inversion recovery magnitude (TIRM). Neuroradiology 55, 41–48 (2013). https://doi.org/10.1007/s00234-012-1085-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-012-1085-x

Keywords

Navigation