Skip to main content
Log in

Metabolic gray matter changes of adolescents with anorexia nervosa in combined MR proton and phosphorus spectroscopy

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

There are hints for changes in phospholipid membrane metabolism and structure in the brain of adolescents with anorexia nervosa (AN) using either proton (1H) or phosphorus (31P) magnetic resonance spectroscopic imaging (MRSI). We aimed to specify these pathological metabolite changes by combining both methods with additional focus on the neuronal metabolites glutamate (Glu) and N-acetyl-l-aspartate (NAA).

Methods

Twenty-one female patients (mean 14.4 ± 1.9 years) and 29 female controls (mean 16 ± 1.6 years) underwent 1H and 31P MRSI at 3 T applied to the centrum semiovale including the anterior cingulate cortex. We assessed gray matter (GM) and white matter (WM) metabolite concentration changes of the frontal and parietal brain measuring choline(Cho)- and ethanolamine(Eth)-containing compounds, Glutamate (Glu) and glutamine (Gln) and their sum (Glx), myoinositol, NAA, and high-energy phosphates.

Results

For 1H MRSI, a clear discrimination between GM and WM concentrations was possible, showing an increase of Glx (p < 0.001), NAA (frontal p < 0.05), pooled creatine (tCr) (p < 0.001), and choline (tCho) (p < 0.05) in the GM of AN patients. The lipid catabolites glycerophosphocholine (p < 0.07) and glycerophosphoethanolamine (p < 0.03) were increased in the parietal region.

Conclusions

Significant changes in GM metabolite concentrations were observed in AN possibly triggered by elevated excitotoxin Glu. Increased tCho may indicate modifications of membrane phospholipids due to increased catabolism in the parietal region. Since no significant changes in phosphorylated choline compounds were found for the frontal region, the tCho increase in this region may hint to fluidity changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hudson JI, Hiripi E, Pope HG Jr, Kessler RC (2007) The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biol Psychiatry 61:348–358

    Article  PubMed  Google Scholar 

  2. Wentz E, Gillberg IC, Anckarsater H, Gillberg C, Rastam M (2009) Reproduction and offspring status 18 years after teenage-onset anorexia nervosa—a controlled community-based study. Int J Eat Disord 42:483–491

    Article  PubMed  Google Scholar 

  3. Nielsen S (2001) Epidemiology and mortality of eating disorders. Psychiatr Clin North Am 24:201–214

    Article  PubMed  CAS  Google Scholar 

  4. Brandenburg BM, Andersen AE (2007) Unintentional onset of anorexia nervosa. Eat Weight Disord 12:97–100

    PubMed  CAS  Google Scholar 

  5. Cooper M, Turner H (2000) Underlying assumptions and core beliefs in anorexia nervosa and dieting. Br J Clin Psychol 39:215–218

    Article  PubMed  Google Scholar 

  6. Fairburn CG, Cooper Z, Doll HA, Welch SL (1999) Risk factors for anorexia nervosa: three integrated case–control comparisons. Arch Gen Psychiatry 56:468–476

    Article  PubMed  CAS  Google Scholar 

  7. Castro J, Lazaro L, Pons F, Halperin I, Toro J (2001) Adolescent anorexia nervosa: the catch-up effect in bone mineral density after recovery. J Am Acad Child Adolesc Psychiatry 40:1215–1221

    Article  PubMed  CAS  Google Scholar 

  8. Mont L, Castro J, Herreros B et al (2003) Reversibility of cardiac abnormalities in adolescents with anorexia nervosa after weight recovery. J Am Acad Child Adolesc Psychiatry 42:808–813

    Article  PubMed  Google Scholar 

  9. Castro-Fornieles J, Caldu X, Andres-Perpina S, Lazaro L, Bargallo N, Falcon C et al (2010) A cross-sectional and follow-up functional MRI study with a working memory task in adolescent anorexia nervosa. Neuropsychologia 48:4111–4116

    Article  PubMed  Google Scholar 

  10. Kerem NC, Katzman DK (2003) Brain structure and function in adolescents with anorexia nervosa. Adolesc Med 14:109–118

    PubMed  Google Scholar 

  11. Fairburn CG, Harrison PJ (2003) Eating disorders. Lancet 361:407–416

    Article  PubMed  Google Scholar 

  12. Herpertz-Dahlmann BJ, Seitz J, Konrad K (2011) Aetiology of anorexia nervosa: from a “psychosomatic family model” to a neuropsychiatric disorder? Eur Arch Psychiatry Clin Neurosci 261:177–181

    Article  Google Scholar 

  13. Steinhausen HC (2002) The outcome of anorexia nervosa in the 20th century. Am J Psychiatry 159:1284–1293

    Article  PubMed  Google Scholar 

  14. Suchan B, Busch M, Schulte D, Gronemeyer D, Herpertz S, Vocks S (2010) Reduction of gray matter density in the extrastriate body area in women with anorexia nervosa. Behav Brain Res 206:63–67

    Article  PubMed  Google Scholar 

  15. Delvenne V, Goldman S, De Maertelaer V, Lotstra F (1999) Brain glucose metabolism in eating disorders assessed by positron emission tomography. Int J Eat Disord 25:29–37

    Article  PubMed  CAS  Google Scholar 

  16. Kojima S, Nagai N, Nakabeppu Y et al (2005) Comparison of regional cerebral blood flow in patients with anorexia nervosa before and after weight gain. Psychiatry Res 140:251–258

    Article  PubMed  Google Scholar 

  17. Santel S, Baving L, Krauel K, Munte TF, Rotte M (2006) Hunger and satiety in anorexia nervosa: fMRI during cognitive processing of food pictures. Brain Res 1114:138–148

    Article  PubMed  CAS  Google Scholar 

  18. Schonheit B, Meyer U, Kuchinke J, Schulz E, Neumarker KJ (1996) Morphometrical investigations on lamina-V-pyramidal-neurons in the frontal cortex of a case with anorexia nervosa. J Hirnforsch 37:269–280

    PubMed  CAS  Google Scholar 

  19. Uher R, Murphy T, Brammer MJ et al (2004) Medial prefrontal cortex activity associated with symptom provocation in eating disorders. Am J Psychiatry 161:1238–1246

    Article  PubMed  Google Scholar 

  20. Wagner A, Ruf M, Braus DF, Schmidt MH (2003) Neuronal activity changes and body image distortion in anorexia nervosa. Neuroreport 14:2193–2197

    Article  PubMed  Google Scholar 

  21. Katzman DK, Lambe EK, Mikulis DJ, Ridgley JN, Goldbloom DS, Zipursky RB (1996) Cerebral gray matter and white matter volume deficits in adolescent girls with anorexia nervosa. J Pediatr 129:794–803

    Article  PubMed  CAS  Google Scholar 

  22. Lafon R, Billet M, Billet B (1950) Essential anorexia of young girls and atrophic encephalopathy. Ann Med Psychol (Paris) 108:248–250

    CAS  Google Scholar 

  23. Swayze VW, Andersen A, Arndt S, Rajarethinam R, Fleming F, Sato Y, Andreasen NC (1996) Reversibility of brain tissue loss in anorexia nervosa assessed with a computerized Talairach 3-D proportional grid. Psychol Med 26:381–390

    Article  PubMed  Google Scholar 

  24. Husain MM, Black KJ, Doraiswamy PM et al (1992) Subcortical brain anatomy in anorexia and bulimia. Biol Psychiatry 31:735–738

    Article  PubMed  CAS  Google Scholar 

  25. Gaudio S, Nocchi F, Franchin T, Genovese E, Cannata V, Longo D, Fariello G (2011) Gray matter decrease distribution in the early stages of anorexia nervosa restrictive type in adolescents. Psychiatry Res 191:24–30

    Article  PubMed  Google Scholar 

  26. Joos A, Kloppel S, Hartmann A et al (2010) Voxel-based morphometry in eating disorders: correlation of psychopathology with grey matter volume. Psychiatry Res 182:146–151

    Article  PubMed  Google Scholar 

  27. Joos A, Hartmann A, Glauche V et al (2011) Grey matter deficit in long-term recovered anorexia nervosa patients. Eur Eat Disord Rev 19:59–63

    Article  PubMed  Google Scholar 

  28. Castro-Fornieles J, Bargallo N, Lazaro L, Andres S, Falcon C, Plana MT, Junque C (2009) A cross-sectional and follow-up voxel-based morphometric MRI study in adolescent anorexia nervosa. J Psychiatr Res 43:331–340

    Article  PubMed  Google Scholar 

  29. Friederich HC, Walther S, Bendszus M et al (2012) Grey matter abnormalities within cortico-limbic-striatal circuits in acute and weight-restored anorexia nervosa patients. Neuroimage 59:1106–1113

    Article  PubMed  Google Scholar 

  30. McCormick LM, Keel PK, Brumm MC, Bowers W, Swayze V, Andersen A, Andreasen N (2008) Implications of starvation-induced change in right dorsal anterior cingulate volume in anorexia nervosa. Int J Eat Disord 41:602–610

    Article  PubMed  Google Scholar 

  31. Muhlau M, Gaser C, Ilg R et al (2007) Gray matter decrease of the anterior cingulate cortex in anorexia nervosa. Am J Psychiatry 164:1850–1857

    Article  PubMed  Google Scholar 

  32. Boghi A, Sterpone S, Sales S, D'Agata F, Bradac GB, Zullo G, Munno D (2011) In vivo evidence of global and focal brain alterations in anorexia nervosa. Psychiatry Res 192:154–159

    Article  PubMed  Google Scholar 

  33. Lambe EK, Katzman DK, Mikulis DJ, Kennedy SH, Zipursky RB (1997) Cerebral gray matter volume deficits after weight recovery from anorexia nervosa. Arch Gen Psychiatry 54:537–542

    Article  PubMed  CAS  Google Scholar 

  34. Wagner A, Greer P, Bailer UF et al (2006) Normal brain tissue volumes after long-term recovery in anorexia and bulimia nervosa. Biol Psychiatry 59:291–293

    Article  PubMed  Google Scholar 

  35. Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215–222

    Article  PubMed  Google Scholar 

  36. Steinglass JE, Walsh BT, Stern Y (2006) Set shifting deficit in anorexia nervosa. J Int Neuropsychol Soc 12:431–435

    Article  PubMed  Google Scholar 

  37. Frank GK, Bailer UF, Henry S, Wagner A, Kaye WH (2004) Neuroimaging studies in eating disorders. CNS Spectr 9:539–548

    PubMed  Google Scholar 

  38. Uher R, Brammer MJ, Murphy T, Campbell IC, Ng VW, Williams SC, Treasure J (2003) Recovery and chronicity in anorexia nervosa: brain activity associated with differential outcomes. Biol Psychiatry 54:934–942

    Article  PubMed  Google Scholar 

  39. Naruo T, Nakabeppu Y, Deguchi D, Nagai N, Tsutsui J, Nakajo M, Nozoe S (2001) Decreases in blood perfusion of the anterior cingulate gyri in anorexia nervosa restricters assessed by SPECT image analysis. BMC Psychiatry 1:2

    Article  PubMed  CAS  Google Scholar 

  40. Takano A, Shiga T, Kitagawa N, Koyama T, Katoh C, Tsukamoto E, Tamaki N (2001) Abnormal neuronal network in anorexia nervosa studied with I-123-IMP SPECT. Psychiatry Res 107:45–50

    Article  PubMed  CAS  Google Scholar 

  41. Jensen JE, Drost DJ, Menon RS, Williamson PC (2002) In vivo brain (31)P-MRS: measuring the phospholipid resonances at 4 Tesla from small voxels. NMR Biomed 15:338–347

    Article  PubMed  CAS  Google Scholar 

  42. Potwarka JJ, Drost DJ, Williamson PC (1999) Quantifying 1H decoupled in vivo 31P brain spectra. NMR Biomed 12:8–14

    Article  PubMed  CAS  Google Scholar 

  43. Mockel R, Schlemmer HP, Guckel F et al (1999) 1H-MR spectroscopy in anorexia nervosa: reversible cerebral metabolic changes. Rofo 170:371–377

    PubMed  CAS  Google Scholar 

  44. Schlemmer HP, Mockel R, Marcus A et al (1998) Proton magnetic resonance spectroscopy in acute, juvenile anorexia nervosa. Psychiatry Res 82:171–179

    Article  PubMed  CAS  Google Scholar 

  45. Hentschel J, Mockel R, Schlemmer HP et al (1999) 1H-MR spectroscopy in anorexia nervosa: the characteristic differences between patients and healthy subjects. Rofo 170:284–289

    PubMed  CAS  Google Scholar 

  46. Roser W, Bubl R, Buergin D, Seelig J, Radue EW, Rost B (1999) Metabolic changes in the brain of patients with anorexia and bulimia nervosa as detected by proton magnetic resonance spectroscopy. Int J Eat Disord 26:119–136

    Article  PubMed  CAS  Google Scholar 

  47. Joos A, Perlov E, Buchert M et al (2011) Magnetic resonance spectroscopy of the anterior cingulate cortex in eating disorders. Psychiatry Res 191:196–200

    Article  PubMed  Google Scholar 

  48. Grzelak P, Gajewicz W, Wyszogrodzka-Kucharska A, Rotkiewicz A, Stefanczyk L, Goraj B, Rabe-Jablonska J (2005) Brain metabolism alterations in patients with anorexia nervosa observed in 1H-MRS. Psychiatr Pol 39:761–771

    PubMed  Google Scholar 

  49. Castro-Fornieles J, Bargallo N, Lazaro L, Andres S, Falcon C, Plana MT, Junque C (2007) Adolescent anorexia nervosa: cross-sectional and follow-up frontal gray matter disturbances detected with proton magnetic resonance spectroscopy. J Psychiatr Res 41:952–958

    Article  PubMed  Google Scholar 

  50. Ohrmann P, Kersting A, Suslow T et al (2004) Proton magnetic resonance spectroscopy in anorexia nervosa: correlations with cognition. Neuroreport 15:549–553

    Article  PubMed  Google Scholar 

  51. Rzanny R, Freesmeyer D, Reichenbach JR et al (2003) 31P-MR spectroscopy of the brain in patients with anorexia nervosa: characteristic differences in the spectra between patients and healthy control subjects. Rofo 175:75–82

    Article  PubMed  CAS  Google Scholar 

  52. Kato T, Shioiri T, Murashita J, Inubushi T (1997) Phosphorus-31 magnetic resonance spectroscopic observations in 4 cases with anorexia nervosa. Prog Neuropsychopharmacol Biol Psychiatry 21:719–724

    Article  PubMed  CAS  Google Scholar 

  53. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric, Washington, DC

    Google Scholar 

  54. Garner D, Olmsted MP (1984) The Eating Disorder Inventory manual. Psychological Assessment Resources, Odessa

    Google Scholar 

  55. Hattingen E, Magerkurth J, Pilatus U, Hubers A, Wahl M, Ziemann U (2011) Combined (1)H and (31)P spectroscopy provides new insights into the pathobiochemistry of brain damage in multiple sclerosis. NMR Biomed 24:536–546

    Article  PubMed  CAS  Google Scholar 

  56. Gasparovic C, Song T, Devier D et al (2006) Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn Reson Med 55:1219–1226

    Article  PubMed  CAS  Google Scholar 

  57. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    Article  PubMed  CAS  Google Scholar 

  58. Vanhamme L, van den Boogaart A, Van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129:35–43

    Article  PubMed  CAS  Google Scholar 

  59. Hattingen E, Magerkurth J, Pilatus U et al (2009) Phosphorus and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced Parkinson’s disease. Brain 132:3285–3297

    Article  PubMed  Google Scholar 

  60. Kreis R (2004) Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 17:361–381

    Article  PubMed  CAS  Google Scholar 

  61. Buchli R, Duc CO, Martin E, Boesiger P (1994) Assessment of absolute metabolite concentrations in human tissue by 31P MRS in vivo. Part I: cerebrum, cerebellum, cerebral gray and white matter. Magn Reson Med 32:447–452

    Article  PubMed  CAS  Google Scholar 

  62. Hattingen E, Raab P, Franz K, Zanella FE, Lanfermann H, Pilatus U (2008) Myo-inositol: a marker of reactive astrogliosis in glial tumors? NMR Biomed 21:233–241

    Article  PubMed  CAS  Google Scholar 

  63. Pettegrew JW, Kopp SJ, Minshew NJ, Glonek T, Feliksik JM, Tow JP, Cohen M (1987) 31P nuclear magnetic resonance studies of phosphoglyceride metabolism in developing and degenerating brain: preliminary observations. J Neuropathol Exp Neurol 46:419–430

    Article  PubMed  CAS  Google Scholar 

  64. Traber F, Block W, Lamerichs R, Gieseke J, Schild HH (2004) 1H metabolite relaxation times at 3.0 Tesla: Measurements of T1 and T2 values in normal brain and determination of regional differences in transverse relaxation. J Magn Reson Imaging 19:537–545

    Article  PubMed  Google Scholar 

  65. Wockel L, Bertsch T, Koch S et al (2007) The importance of choline and different serum parameters for the course of the anorexia nervosa. Fortschr Neurol Psychiatr 75:402–412

    Article  PubMed  CAS  Google Scholar 

  66. Brenner RE, Munro PM, Williams SC et al (1993) The proton NMR spectrum in acute EAE: the significance of the change in the Cho:Cr ratio. Magn Reson Med 29:737–745

    Article  PubMed  CAS  Google Scholar 

  67. Michaelis T, Merboldt KD, Bruhn H, Hanicke W, Frahm J (1993) Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 187:219–227

    PubMed  CAS  Google Scholar 

  68. Miller BL, Chang L, Booth R et al (1996) In vivo 1H MRS choline: correlation with in vitro chemistry/histology. Life Sci 58:1929–1935

    Article  PubMed  CAS  Google Scholar 

  69. Kalyvas A, David S (2004) Cytosolic phospholipase A2 plays a key role in the pathogenesis of multiple sclerosis-like disease. Neuron 41:323–335

    Article  PubMed  CAS  Google Scholar 

  70. Ong WY, Lu XR, Ong BK, Horrocks LA, Farooqui AA, Lim SK (2003) Quinacrine abolishes increases in cytoplasmic phospholipase A2 mRNA levels in the rat hippocampus after kainate-induced neuronal injury. Exp Brain Res 148:521–524

    PubMed  CAS  Google Scholar 

  71. Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11

    Article  PubMed  CAS  Google Scholar 

  72. Lee AL, Ogle WO, Sapolsky RM (2002) Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disord 4:117–128

    Article  PubMed  CAS  Google Scholar 

  73. Baker EH, Basso G, Barker PB, Smith MA, Bonekamp D, Horska A (2008) Regional apparent metabolite concentrations in young adult brain measured by (1)H MR spectroscopy at 3 Tesla. J Magn Reson Imaging 27:489–499

    Article  PubMed  Google Scholar 

  74. Pouwels PJ, Brockmann K, Kruse B, Wilken B, Wick M, Hanefeld F, Frahm J (1999) Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res 46:474–485

    Article  PubMed  CAS  Google Scholar 

  75. Giorgio A, Santelli L, Tomassini V, Bosnell R, Smith S, De Stefano N, Johansen-Berg H (2010) Age-related changes in grey and white matter structure throughout adulthood. Neuroimage 51:943–951

    Article  PubMed  Google Scholar 

  76. Hutton C, Draganski B, Ashburner J, Weiskopf N (2009) A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. Neuroimage 48:371–380

    Article  PubMed  Google Scholar 

  77. Bennett CM, Baird AA (2006) Anatomical changes in the emerging adult brain: a voxel-based morphometry study. Hum Brain Mapp 27:766–777

    Article  PubMed  Google Scholar 

  78. Blakemore SJ, Choudhury S (2006) Development of the adolescent brain: implications for executive function and social cognition. J Child Psychol Psychiatry 47:296–312

    Article  PubMed  Google Scholar 

  79. Hudspeth WJ, Pribram KH (1992) Psychophysiological indices of cerebral maturation. Int J Psychophysiol 12:19–29

    Article  PubMed  CAS  Google Scholar 

  80. Killgore WD, Yurgelun-Todd DA (2005) Developmental changes in the functional brain responses of adolescents to images of high and low-calorie foods. Dev Psychobiol 47:377–397

    Article  PubMed  Google Scholar 

  81. Erecinska M, Zaleska MM, Nissim I, Nelson D, Dagani F, Yudkoff M (1988) Glucose and synaptosomal glutamate metabolism: studies with [15 N] glutamate. J Neurochem 51:892–902

    Article  PubMed  CAS  Google Scholar 

  82. Hattingen E, Lanfermann H, Menon S et al (2009) Combined 1H and 31P MR spectroscopic imaging: impaired energy metabolism in severe carotid stenosis and changes upon treatment. MAGMA 22:43–52

    Article  PubMed  CAS  Google Scholar 

  83. Dringen R, Verleysdonk S, Hamprecht B, Willker W, Leibfritz D, Brand A (1998) Metabolism of glycine in primary astroglial cells: synthesis of creatine, serine, and glutathione. J Neurochem 70:835–840

    Article  PubMed  CAS  Google Scholar 

  84. Hoerst M, Weber-Fahr W, Tunc-Skarka N, Ruf M, Bohus M, Schmahl C, Ende G (2010) Correlation of glutamate levels in the anterior cingulate cortex with self-reported impulsivity in patients with borderline personality disorder and healthy controls. Arch Gen Psychiatry 67:946–954

    Article  PubMed  CAS  Google Scholar 

  85. Moore CM, Frazier JA, Glod CA et al (2007) Glutamine and glutamate levels in children and adolescents with bipolar disorder: a 4.0-T proton magnetic resonance spectroscopy study of the anterior cingulate cortex. J Am Acad Child Adolesc Psychiatry 46:524–534

    Article  PubMed  Google Scholar 

  86. Stone JM, Day F, Tsagaraki H et al (2009) Glutamate dysfunction in people with prodromal symptoms of psychosis: relationship to gray matter volume. Biol Psychiatry 66:533–539

    Article  PubMed  CAS  Google Scholar 

  87. Theberge J, Williamson KE, Aoyama N et al (2007) Longitudinal grey-matter and glutamatergic losses in first-episode schizophrenia. Br J Psychiatry 191:325–334

    Article  PubMed  Google Scholar 

  88. Buntup D, Skare O, Solbu TT, Chaudhry FA, Storm-Mathisen J, Thangnipon W (2008) Beta-amyloid 25–35 peptide reduces the expression of glutamine transporter SAT1 in cultured cortical neurons. Neurochem Res 33:248–256

    Article  PubMed  CAS  Google Scholar 

  89. Norenberg MD, Bender AS (1995) Astrocyte swelling in liver failure: role of glutamine and benzodiazepines. Acta Neurochir 60:24–27

    Google Scholar 

  90. Videen JS, Michaelis T, Pinto P, Ross BD (1995) Human cerebral osmolytes during chronic hyponatremia. A proton magnetic resonance spectroscopy study. J Clin Invest 95:788–793

    Article  PubMed  CAS  Google Scholar 

  91. Alvin P, Zogheib J, Rey C, Losay J (1993) Severe complications and mortality in mental eating disorders in adolescence. On 99 hospitalized patients. Arch Fr Pediatr 50:755–762

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Blasel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blasel, S., Pilatus, U., Magerkurth, J. et al. Metabolic gray matter changes of adolescents with anorexia nervosa in combined MR proton and phosphorus spectroscopy. Neuroradiology 54, 753–764 (2012). https://doi.org/10.1007/s00234-011-1001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-011-1001-9

Keywords

Navigation