Advertisement

Neuroradiology

, Volume 54, Issue 7, pp 753–764 | Cite as

Metabolic gray matter changes of adolescents with anorexia nervosa in combined MR proton and phosphorus spectroscopy

  • Stella BlaselEmail author
  • Ulrich Pilatus
  • Joerg Magerkurth
  • Maya von Stauffenberg
  • Dmitri Vronski
  • Manuel Mueller
  • Lars Woeckel
  • Elke Hattingen
Paediatric Neuroradiology

Abstract

Introduction

There are hints for changes in phospholipid membrane metabolism and structure in the brain of adolescents with anorexia nervosa (AN) using either proton (1H) or phosphorus (31P) magnetic resonance spectroscopic imaging (MRSI). We aimed to specify these pathological metabolite changes by combining both methods with additional focus on the neuronal metabolites glutamate (Glu) and N-acetyl-l-aspartate (NAA).

Methods

Twenty-one female patients (mean 14.4 ± 1.9 years) and 29 female controls (mean 16 ± 1.6 years) underwent 1H and 31P MRSI at 3 T applied to the centrum semiovale including the anterior cingulate cortex. We assessed gray matter (GM) and white matter (WM) metabolite concentration changes of the frontal and parietal brain measuring choline(Cho)- and ethanolamine(Eth)-containing compounds, Glutamate (Glu) and glutamine (Gln) and their sum (Glx), myoinositol, NAA, and high-energy phosphates.

Results

For 1H MRSI, a clear discrimination between GM and WM concentrations was possible, showing an increase of Glx (p < 0.001), NAA (frontal p < 0.05), pooled creatine (tCr) (p < 0.001), and choline (tCho) (p < 0.05) in the GM of AN patients. The lipid catabolites glycerophosphocholine (p < 0.07) and glycerophosphoethanolamine (p < 0.03) were increased in the parietal region.

Conclusions

Significant changes in GM metabolite concentrations were observed in AN possibly triggered by elevated excitotoxin Glu. Increased tCho may indicate modifications of membrane phospholipids due to increased catabolism in the parietal region. Since no significant changes in phosphorylated choline compounds were found for the frontal region, the tCho increase in this region may hint to fluidity changes.

Keywords

Anorexia nervosa Gray matter Membrane phospholipids MR spectroscopy Phosphorus 

Notes

Conflict of interest

We declare that we have no conflict of interest.

References

  1. 1.
    Hudson JI, Hiripi E, Pope HG Jr, Kessler RC (2007) The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biol Psychiatry 61:348–358PubMedCrossRefGoogle Scholar
  2. 2.
    Wentz E, Gillberg IC, Anckarsater H, Gillberg C, Rastam M (2009) Reproduction and offspring status 18 years after teenage-onset anorexia nervosa—a controlled community-based study. Int J Eat Disord 42:483–491PubMedCrossRefGoogle Scholar
  3. 3.
    Nielsen S (2001) Epidemiology and mortality of eating disorders. Psychiatr Clin North Am 24:201–214PubMedCrossRefGoogle Scholar
  4. 4.
    Brandenburg BM, Andersen AE (2007) Unintentional onset of anorexia nervosa. Eat Weight Disord 12:97–100PubMedGoogle Scholar
  5. 5.
    Cooper M, Turner H (2000) Underlying assumptions and core beliefs in anorexia nervosa and dieting. Br J Clin Psychol 39:215–218PubMedCrossRefGoogle Scholar
  6. 6.
    Fairburn CG, Cooper Z, Doll HA, Welch SL (1999) Risk factors for anorexia nervosa: three integrated case–control comparisons. Arch Gen Psychiatry 56:468–476PubMedCrossRefGoogle Scholar
  7. 7.
    Castro J, Lazaro L, Pons F, Halperin I, Toro J (2001) Adolescent anorexia nervosa: the catch-up effect in bone mineral density after recovery. J Am Acad Child Adolesc Psychiatry 40:1215–1221PubMedCrossRefGoogle Scholar
  8. 8.
    Mont L, Castro J, Herreros B et al (2003) Reversibility of cardiac abnormalities in adolescents with anorexia nervosa after weight recovery. J Am Acad Child Adolesc Psychiatry 42:808–813PubMedCrossRefGoogle Scholar
  9. 9.
    Castro-Fornieles J, Caldu X, Andres-Perpina S, Lazaro L, Bargallo N, Falcon C et al (2010) A cross-sectional and follow-up functional MRI study with a working memory task in adolescent anorexia nervosa. Neuropsychologia 48:4111–4116PubMedCrossRefGoogle Scholar
  10. 10.
    Kerem NC, Katzman DK (2003) Brain structure and function in adolescents with anorexia nervosa. Adolesc Med 14:109–118PubMedGoogle Scholar
  11. 11.
    Fairburn CG, Harrison PJ (2003) Eating disorders. Lancet 361:407–416PubMedCrossRefGoogle Scholar
  12. 12.
    Herpertz-Dahlmann BJ, Seitz J, Konrad K (2011) Aetiology of anorexia nervosa: from a “psychosomatic family model” to a neuropsychiatric disorder? Eur Arch Psychiatry Clin Neurosci 261:177–181CrossRefGoogle Scholar
  13. 13.
    Steinhausen HC (2002) The outcome of anorexia nervosa in the 20th century. Am J Psychiatry 159:1284–1293PubMedCrossRefGoogle Scholar
  14. 14.
    Suchan B, Busch M, Schulte D, Gronemeyer D, Herpertz S, Vocks S (2010) Reduction of gray matter density in the extrastriate body area in women with anorexia nervosa. Behav Brain Res 206:63–67PubMedCrossRefGoogle Scholar
  15. 15.
    Delvenne V, Goldman S, De Maertelaer V, Lotstra F (1999) Brain glucose metabolism in eating disorders assessed by positron emission tomography. Int J Eat Disord 25:29–37PubMedCrossRefGoogle Scholar
  16. 16.
    Kojima S, Nagai N, Nakabeppu Y et al (2005) Comparison of regional cerebral blood flow in patients with anorexia nervosa before and after weight gain. Psychiatry Res 140:251–258PubMedCrossRefGoogle Scholar
  17. 17.
    Santel S, Baving L, Krauel K, Munte TF, Rotte M (2006) Hunger and satiety in anorexia nervosa: fMRI during cognitive processing of food pictures. Brain Res 1114:138–148PubMedCrossRefGoogle Scholar
  18. 18.
    Schonheit B, Meyer U, Kuchinke J, Schulz E, Neumarker KJ (1996) Morphometrical investigations on lamina-V-pyramidal-neurons in the frontal cortex of a case with anorexia nervosa. J Hirnforsch 37:269–280PubMedGoogle Scholar
  19. 19.
    Uher R, Murphy T, Brammer MJ et al (2004) Medial prefrontal cortex activity associated with symptom provocation in eating disorders. Am J Psychiatry 161:1238–1246PubMedCrossRefGoogle Scholar
  20. 20.
    Wagner A, Ruf M, Braus DF, Schmidt MH (2003) Neuronal activity changes and body image distortion in anorexia nervosa. Neuroreport 14:2193–2197PubMedCrossRefGoogle Scholar
  21. 21.
    Katzman DK, Lambe EK, Mikulis DJ, Ridgley JN, Goldbloom DS, Zipursky RB (1996) Cerebral gray matter and white matter volume deficits in adolescent girls with anorexia nervosa. J Pediatr 129:794–803PubMedCrossRefGoogle Scholar
  22. 22.
    Lafon R, Billet M, Billet B (1950) Essential anorexia of young girls and atrophic encephalopathy. Ann Med Psychol (Paris) 108:248–250Google Scholar
  23. 23.
    Swayze VW, Andersen A, Arndt S, Rajarethinam R, Fleming F, Sato Y, Andreasen NC (1996) Reversibility of brain tissue loss in anorexia nervosa assessed with a computerized Talairach 3-D proportional grid. Psychol Med 26:381–390PubMedCrossRefGoogle Scholar
  24. 24.
    Husain MM, Black KJ, Doraiswamy PM et al (1992) Subcortical brain anatomy in anorexia and bulimia. Biol Psychiatry 31:735–738PubMedCrossRefGoogle Scholar
  25. 25.
    Gaudio S, Nocchi F, Franchin T, Genovese E, Cannata V, Longo D, Fariello G (2011) Gray matter decrease distribution in the early stages of anorexia nervosa restrictive type in adolescents. Psychiatry Res 191:24–30PubMedCrossRefGoogle Scholar
  26. 26.
    Joos A, Kloppel S, Hartmann A et al (2010) Voxel-based morphometry in eating disorders: correlation of psychopathology with grey matter volume. Psychiatry Res 182:146–151PubMedCrossRefGoogle Scholar
  27. 27.
    Joos A, Hartmann A, Glauche V et al (2011) Grey matter deficit in long-term recovered anorexia nervosa patients. Eur Eat Disord Rev 19:59–63PubMedCrossRefGoogle Scholar
  28. 28.
    Castro-Fornieles J, Bargallo N, Lazaro L, Andres S, Falcon C, Plana MT, Junque C (2009) A cross-sectional and follow-up voxel-based morphometric MRI study in adolescent anorexia nervosa. J Psychiatr Res 43:331–340PubMedCrossRefGoogle Scholar
  29. 29.
    Friederich HC, Walther S, Bendszus M et al (2012) Grey matter abnormalities within cortico-limbic-striatal circuits in acute and weight-restored anorexia nervosa patients. Neuroimage 59:1106–1113PubMedCrossRefGoogle Scholar
  30. 30.
    McCormick LM, Keel PK, Brumm MC, Bowers W, Swayze V, Andersen A, Andreasen N (2008) Implications of starvation-induced change in right dorsal anterior cingulate volume in anorexia nervosa. Int J Eat Disord 41:602–610PubMedCrossRefGoogle Scholar
  31. 31.
    Muhlau M, Gaser C, Ilg R et al (2007) Gray matter decrease of the anterior cingulate cortex in anorexia nervosa. Am J Psychiatry 164:1850–1857PubMedCrossRefGoogle Scholar
  32. 32.
    Boghi A, Sterpone S, Sales S, D'Agata F, Bradac GB, Zullo G, Munno D (2011) In vivo evidence of global and focal brain alterations in anorexia nervosa. Psychiatry Res 192:154–159PubMedCrossRefGoogle Scholar
  33. 33.
    Lambe EK, Katzman DK, Mikulis DJ, Kennedy SH, Zipursky RB (1997) Cerebral gray matter volume deficits after weight recovery from anorexia nervosa. Arch Gen Psychiatry 54:537–542PubMedCrossRefGoogle Scholar
  34. 34.
    Wagner A, Greer P, Bailer UF et al (2006) Normal brain tissue volumes after long-term recovery in anorexia and bulimia nervosa. Biol Psychiatry 59:291–293PubMedCrossRefGoogle Scholar
  35. 35.
    Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4:215–222PubMedCrossRefGoogle Scholar
  36. 36.
    Steinglass JE, Walsh BT, Stern Y (2006) Set shifting deficit in anorexia nervosa. J Int Neuropsychol Soc 12:431–435PubMedCrossRefGoogle Scholar
  37. 37.
    Frank GK, Bailer UF, Henry S, Wagner A, Kaye WH (2004) Neuroimaging studies in eating disorders. CNS Spectr 9:539–548PubMedGoogle Scholar
  38. 38.
    Uher R, Brammer MJ, Murphy T, Campbell IC, Ng VW, Williams SC, Treasure J (2003) Recovery and chronicity in anorexia nervosa: brain activity associated with differential outcomes. Biol Psychiatry 54:934–942PubMedCrossRefGoogle Scholar
  39. 39.
    Naruo T, Nakabeppu Y, Deguchi D, Nagai N, Tsutsui J, Nakajo M, Nozoe S (2001) Decreases in blood perfusion of the anterior cingulate gyri in anorexia nervosa restricters assessed by SPECT image analysis. BMC Psychiatry 1:2PubMedCrossRefGoogle Scholar
  40. 40.
    Takano A, Shiga T, Kitagawa N, Koyama T, Katoh C, Tsukamoto E, Tamaki N (2001) Abnormal neuronal network in anorexia nervosa studied with I-123-IMP SPECT. Psychiatry Res 107:45–50PubMedCrossRefGoogle Scholar
  41. 41.
    Jensen JE, Drost DJ, Menon RS, Williamson PC (2002) In vivo brain (31)P-MRS: measuring the phospholipid resonances at 4 Tesla from small voxels. NMR Biomed 15:338–347PubMedCrossRefGoogle Scholar
  42. 42.
    Potwarka JJ, Drost DJ, Williamson PC (1999) Quantifying 1H decoupled in vivo 31P brain spectra. NMR Biomed 12:8–14PubMedCrossRefGoogle Scholar
  43. 43.
    Mockel R, Schlemmer HP, Guckel F et al (1999) 1H-MR spectroscopy in anorexia nervosa: reversible cerebral metabolic changes. Rofo 170:371–377PubMedGoogle Scholar
  44. 44.
    Schlemmer HP, Mockel R, Marcus A et al (1998) Proton magnetic resonance spectroscopy in acute, juvenile anorexia nervosa. Psychiatry Res 82:171–179PubMedCrossRefGoogle Scholar
  45. 45.
    Hentschel J, Mockel R, Schlemmer HP et al (1999) 1H-MR spectroscopy in anorexia nervosa: the characteristic differences between patients and healthy subjects. Rofo 170:284–289PubMedGoogle Scholar
  46. 46.
    Roser W, Bubl R, Buergin D, Seelig J, Radue EW, Rost B (1999) Metabolic changes in the brain of patients with anorexia and bulimia nervosa as detected by proton magnetic resonance spectroscopy. Int J Eat Disord 26:119–136PubMedCrossRefGoogle Scholar
  47. 47.
    Joos A, Perlov E, Buchert M et al (2011) Magnetic resonance spectroscopy of the anterior cingulate cortex in eating disorders. Psychiatry Res 191:196–200PubMedCrossRefGoogle Scholar
  48. 48.
    Grzelak P, Gajewicz W, Wyszogrodzka-Kucharska A, Rotkiewicz A, Stefanczyk L, Goraj B, Rabe-Jablonska J (2005) Brain metabolism alterations in patients with anorexia nervosa observed in 1H-MRS. Psychiatr Pol 39:761–771PubMedGoogle Scholar
  49. 49.
    Castro-Fornieles J, Bargallo N, Lazaro L, Andres S, Falcon C, Plana MT, Junque C (2007) Adolescent anorexia nervosa: cross-sectional and follow-up frontal gray matter disturbances detected with proton magnetic resonance spectroscopy. J Psychiatr Res 41:952–958PubMedCrossRefGoogle Scholar
  50. 50.
    Ohrmann P, Kersting A, Suslow T et al (2004) Proton magnetic resonance spectroscopy in anorexia nervosa: correlations with cognition. Neuroreport 15:549–553PubMedCrossRefGoogle Scholar
  51. 51.
    Rzanny R, Freesmeyer D, Reichenbach JR et al (2003) 31P-MR spectroscopy of the brain in patients with anorexia nervosa: characteristic differences in the spectra between patients and healthy control subjects. Rofo 175:75–82PubMedCrossRefGoogle Scholar
  52. 52.
    Kato T, Shioiri T, Murashita J, Inubushi T (1997) Phosphorus-31 magnetic resonance spectroscopic observations in 4 cases with anorexia nervosa. Prog Neuropsychopharmacol Biol Psychiatry 21:719–724PubMedCrossRefGoogle Scholar
  53. 53.
    American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric, Washington, DCGoogle Scholar
  54. 54.
    Garner D, Olmsted MP (1984) The Eating Disorder Inventory manual. Psychological Assessment Resources, OdessaGoogle Scholar
  55. 55.
    Hattingen E, Magerkurth J, Pilatus U, Hubers A, Wahl M, Ziemann U (2011) Combined (1)H and (31)P spectroscopy provides new insights into the pathobiochemistry of brain damage in multiple sclerosis. NMR Biomed 24:536–546PubMedCrossRefGoogle Scholar
  56. 56.
    Gasparovic C, Song T, Devier D et al (2006) Use of tissue water as a concentration reference for proton spectroscopic imaging. Magn Reson Med 55:1219–1226PubMedCrossRefGoogle Scholar
  57. 57.
    Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679PubMedCrossRefGoogle Scholar
  58. 58.
    Vanhamme L, van den Boogaart A, Van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129:35–43PubMedCrossRefGoogle Scholar
  59. 59.
    Hattingen E, Magerkurth J, Pilatus U et al (2009) Phosphorus and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced Parkinson’s disease. Brain 132:3285–3297PubMedCrossRefGoogle Scholar
  60. 60.
    Kreis R (2004) Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 17:361–381PubMedCrossRefGoogle Scholar
  61. 61.
    Buchli R, Duc CO, Martin E, Boesiger P (1994) Assessment of absolute metabolite concentrations in human tissue by 31P MRS in vivo. Part I: cerebrum, cerebellum, cerebral gray and white matter. Magn Reson Med 32:447–452PubMedCrossRefGoogle Scholar
  62. 62.
    Hattingen E, Raab P, Franz K, Zanella FE, Lanfermann H, Pilatus U (2008) Myo-inositol: a marker of reactive astrogliosis in glial tumors? NMR Biomed 21:233–241PubMedCrossRefGoogle Scholar
  63. 63.
    Pettegrew JW, Kopp SJ, Minshew NJ, Glonek T, Feliksik JM, Tow JP, Cohen M (1987) 31P nuclear magnetic resonance studies of phosphoglyceride metabolism in developing and degenerating brain: preliminary observations. J Neuropathol Exp Neurol 46:419–430PubMedCrossRefGoogle Scholar
  64. 64.
    Traber F, Block W, Lamerichs R, Gieseke J, Schild HH (2004) 1H metabolite relaxation times at 3.0 Tesla: Measurements of T1 and T2 values in normal brain and determination of regional differences in transverse relaxation. J Magn Reson Imaging 19:537–545PubMedCrossRefGoogle Scholar
  65. 65.
    Wockel L, Bertsch T, Koch S et al (2007) The importance of choline and different serum parameters for the course of the anorexia nervosa. Fortschr Neurol Psychiatr 75:402–412PubMedCrossRefGoogle Scholar
  66. 66.
    Brenner RE, Munro PM, Williams SC et al (1993) The proton NMR spectrum in acute EAE: the significance of the change in the Cho:Cr ratio. Magn Reson Med 29:737–745PubMedCrossRefGoogle Scholar
  67. 67.
    Michaelis T, Merboldt KD, Bruhn H, Hanicke W, Frahm J (1993) Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 187:219–227PubMedGoogle Scholar
  68. 68.
    Miller BL, Chang L, Booth R et al (1996) In vivo 1H MRS choline: correlation with in vitro chemistry/histology. Life Sci 58:1929–1935PubMedCrossRefGoogle Scholar
  69. 69.
    Kalyvas A, David S (2004) Cytosolic phospholipase A2 plays a key role in the pathogenesis of multiple sclerosis-like disease. Neuron 41:323–335PubMedCrossRefGoogle Scholar
  70. 70.
    Ong WY, Lu XR, Ong BK, Horrocks LA, Farooqui AA, Lim SK (2003) Quinacrine abolishes increases in cytoplasmic phospholipase A2 mRNA levels in the rat hippocampus after kainate-induced neuronal injury. Exp Brain Res 148:521–524PubMedGoogle Scholar
  71. 71.
    Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11PubMedCrossRefGoogle Scholar
  72. 72.
    Lee AL, Ogle WO, Sapolsky RM (2002) Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disord 4:117–128PubMedCrossRefGoogle Scholar
  73. 73.
    Baker EH, Basso G, Barker PB, Smith MA, Bonekamp D, Horska A (2008) Regional apparent metabolite concentrations in young adult brain measured by (1)H MR spectroscopy at 3 Tesla. J Magn Reson Imaging 27:489–499PubMedCrossRefGoogle Scholar
  74. 74.
    Pouwels PJ, Brockmann K, Kruse B, Wilken B, Wick M, Hanefeld F, Frahm J (1999) Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res 46:474–485PubMedCrossRefGoogle Scholar
  75. 75.
    Giorgio A, Santelli L, Tomassini V, Bosnell R, Smith S, De Stefano N, Johansen-Berg H (2010) Age-related changes in grey and white matter structure throughout adulthood. Neuroimage 51:943–951PubMedCrossRefGoogle Scholar
  76. 76.
    Hutton C, Draganski B, Ashburner J, Weiskopf N (2009) A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. Neuroimage 48:371–380PubMedCrossRefGoogle Scholar
  77. 77.
    Bennett CM, Baird AA (2006) Anatomical changes in the emerging adult brain: a voxel-based morphometry study. Hum Brain Mapp 27:766–777PubMedCrossRefGoogle Scholar
  78. 78.
    Blakemore SJ, Choudhury S (2006) Development of the adolescent brain: implications for executive function and social cognition. J Child Psychol Psychiatry 47:296–312PubMedCrossRefGoogle Scholar
  79. 79.
    Hudspeth WJ, Pribram KH (1992) Psychophysiological indices of cerebral maturation. Int J Psychophysiol 12:19–29PubMedCrossRefGoogle Scholar
  80. 80.
    Killgore WD, Yurgelun-Todd DA (2005) Developmental changes in the functional brain responses of adolescents to images of high and low-calorie foods. Dev Psychobiol 47:377–397PubMedCrossRefGoogle Scholar
  81. 81.
    Erecinska M, Zaleska MM, Nissim I, Nelson D, Dagani F, Yudkoff M (1988) Glucose and synaptosomal glutamate metabolism: studies with [15 N] glutamate. J Neurochem 51:892–902PubMedCrossRefGoogle Scholar
  82. 82.
    Hattingen E, Lanfermann H, Menon S et al (2009) Combined 1H and 31P MR spectroscopic imaging: impaired energy metabolism in severe carotid stenosis and changes upon treatment. MAGMA 22:43–52PubMedCrossRefGoogle Scholar
  83. 83.
    Dringen R, Verleysdonk S, Hamprecht B, Willker W, Leibfritz D, Brand A (1998) Metabolism of glycine in primary astroglial cells: synthesis of creatine, serine, and glutathione. J Neurochem 70:835–840PubMedCrossRefGoogle Scholar
  84. 84.
    Hoerst M, Weber-Fahr W, Tunc-Skarka N, Ruf M, Bohus M, Schmahl C, Ende G (2010) Correlation of glutamate levels in the anterior cingulate cortex with self-reported impulsivity in patients with borderline personality disorder and healthy controls. Arch Gen Psychiatry 67:946–954PubMedCrossRefGoogle Scholar
  85. 85.
    Moore CM, Frazier JA, Glod CA et al (2007) Glutamine and glutamate levels in children and adolescents with bipolar disorder: a 4.0-T proton magnetic resonance spectroscopy study of the anterior cingulate cortex. J Am Acad Child Adolesc Psychiatry 46:524–534PubMedCrossRefGoogle Scholar
  86. 86.
    Stone JM, Day F, Tsagaraki H et al (2009) Glutamate dysfunction in people with prodromal symptoms of psychosis: relationship to gray matter volume. Biol Psychiatry 66:533–539PubMedCrossRefGoogle Scholar
  87. 87.
    Theberge J, Williamson KE, Aoyama N et al (2007) Longitudinal grey-matter and glutamatergic losses in first-episode schizophrenia. Br J Psychiatry 191:325–334PubMedCrossRefGoogle Scholar
  88. 88.
    Buntup D, Skare O, Solbu TT, Chaudhry FA, Storm-Mathisen J, Thangnipon W (2008) Beta-amyloid 25–35 peptide reduces the expression of glutamine transporter SAT1 in cultured cortical neurons. Neurochem Res 33:248–256PubMedCrossRefGoogle Scholar
  89. 89.
    Norenberg MD, Bender AS (1995) Astrocyte swelling in liver failure: role of glutamine and benzodiazepines. Acta Neurochir 60:24–27Google Scholar
  90. 90.
    Videen JS, Michaelis T, Pinto P, Ross BD (1995) Human cerebral osmolytes during chronic hyponatremia. A proton magnetic resonance spectroscopy study. J Clin Invest 95:788–793PubMedCrossRefGoogle Scholar
  91. 91.
    Alvin P, Zogheib J, Rey C, Losay J (1993) Severe complications and mortality in mental eating disorders in adolescence. On 99 hospitalized patients. Arch Fr Pediatr 50:755–762PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Stella Blasel
    • 1
    Email author
  • Ulrich Pilatus
    • 1
  • Joerg Magerkurth
    • 1
  • Maya von Stauffenberg
    • 2
  • Dmitri Vronski
    • 1
  • Manuel Mueller
    • 1
  • Lars Woeckel
    • 3
  • Elke Hattingen
    • 1
  1. 1.Institute of NeuroradiologyUniversity of FrankfurtFrankfurtGermany
  2. 2.Department of Psychosomatic MedicineClementine Children Hospital FrankfurtFrankfurtGermany
  3. 3.Clinic for Psychiatry and PsychotherapyClienia Littenheid AGLittenheidSwitzerland

Personalised recommendations