Skip to main content

Advertisement

Log in

The value of magnetic resonance imaging for the detection of the bleeding source in non-traumatic intracerebral haemorrhages: a comparison with conventional digital subtraction angiography

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Conventional digital subtraction angiography (DSA) is currently regarded as the gold standard in detecting underlying vascular pathologies in patients with intracerebral haemorrhages (ICH). However, the use of magnetic resonance imaging (MRI) in the diagnostic workup of ICHs has considerably increased in recent years. Our aim was to evaluate the diagnostic accuracy and yield of MRI for the detection of the underlying aetiology in ICH patients.

Methods

Sixty-seven consecutive patients with an acute ICH who underwent MRI (including magnetic resonance angiography (MRA) and DSA during their diagnostic workup) were included in the study. Magnetic resonance images were retrospectively analysed by two independent neuroradiologists to determine the localisation and cause of the ICH. DSA was used as a reference standard.

Results

In seven patients (10.4%), a DSA-positive vascular aetiology was present (one aneurysm, four arteriovenous malformations, one dural arteriovenous fistula and one vasculitis). All of these cases were correctly diagnosed by both readers on MRI. In addition, MRI revealed the following probable bleeding causes in 39 of the 60 DSA-negative patients: cerebral amyloid angiopathy (17), cavernoma (9), arterial hypertension (8), haemorrhagic transformation of an ischaemic infarction (3) and malignant brain tumour with secondary ICH (2).

Conclusion

Performing MRI with MRA proved to be an accurate diagnostic tool in detecting vascular malformations in patients with ICH. In addition, MRI provided valuable information regarding DSA-negative ICH causes, and thus had a high diagnostic yield in ICH patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

AVM:

Arteriovenous malformations

dAVF:

Dural arterio-venous fistula

DSA:

Digital subtraction angiography

DWI:

Diffusion weighted imaging

CAA:

Cerebral amyloid angiopathy

CI:

Confidence interval

CT:

Computed tomography

CTA:

Computed tomography angiography

FLAIR:

Fluid-attenuated inversion recovery

ICH:

Intracerebral haemorrhages

IVH:

Intraventricular haemorrhage

MRA:

Magnetic resonance angiography

MRI:

Magnetic resonance imaging

SAH:

Subarachnoid haemorrhages

SWI:

Susceptibility weighted imaging

T:

Tesla

TOF:

Time-of-flight

References

  1. Qureshi AI, Tuhrim S, Broderick JP et al (2001) Spontaneous intracerebral hemorrhage. NEJM N Engl J Med 344:1450–1460

    Article  CAS  Google Scholar 

  2. Foulkes MA, Wolf PA, Price TR et al (1988) The Stroke Data Bank: design, methods, and baseline characteristics. Stroke 19:547–554

    Article  PubMed  CAS  Google Scholar 

  3. Linn J, Herms J, Dichgans M et al (2008) Subarachnoid hemosiderosis and superficial cortical hemosiderosis in cerebral amyloid angiopathy. AJNR Am J Neuroradiol 29:184–186

    Article  PubMed  CAS  Google Scholar 

  4. (1999) Arteriovenous malformations of the brain in adults: the Arteriovenous Malformation Study Group. N Engl J Med 340:1812–1818

  5. Kidwell CS, Chalela JA, Saver JL et al (2004) Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA 292:1823–1830

    Article  PubMed  CAS  Google Scholar 

  6. Fiebach JB, Schellinger PD, Gass A et al (2004) Stroke magnetic resonance imaging is accurate in hyperacute intracerebral hemorrhage: a multicenter study on the validity of stroke imaging. Stroke 35:502–506

    Article  PubMed  Google Scholar 

  7. Kidwell CS, Wintermark M (2008) Imaging of intracranial haemorrhage. Lancet Neurol 7:256–267

    Article  PubMed  Google Scholar 

  8. Broderick JP, Adams HP Jr, Barsan W et al (1999) Guidelines for the management of spontaneous intracerebral hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 30:905–915

    Article  PubMed  CAS  Google Scholar 

  9. Heiserman JE, Dean BL, Hodak JA et al (1994) Neurologic complications of cerebral angiography. AJNR Am J Neuroradiol 15:1401–1407

    PubMed  CAS  Google Scholar 

  10. Willinsky RA, Taylor SM, TerBrugge K et al (2003) Neurologic complications of cerebral angiography: prospective analysis of 2899 procedures and review of the literature. Radiology 227:522–528

    Article  PubMed  Google Scholar 

  11. Dawkins AA, Evans AL, Wattam J et al (2007) Complications of cerebral angiography: a prospective analysis of 2,924 consecutive procedures. Neuroradiology 49:753–759

    Article  PubMed  CAS  Google Scholar 

  12. Knudsen KA, Rosand J, Karluk D et al (2001) Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology 56:537–539

    Article  PubMed  CAS  Google Scholar 

  13. Fewel ME, Thompson BG Jr, Hoff JT (2003) Spontaneous intracerebral hemorrhage: a review. Neurosurg Focus 15:1–16

    Google Scholar 

  14. Juvela S, Hillbom M, Palomaki H (1995) Risk factors for spontaneous intracerebral hemorrhage. Stroke 26:1558–1564

    Article  PubMed  CAS  Google Scholar 

  15. Thrift AG, McNeil JJ, Forbes A et al (1996) Risk factors for cerebral hemorrhage in the era of well-controlled hypertension. Melbourne Risk Factor Study (MERFS) Group. Stroke 27:2020–2025

    Article  PubMed  CAS  Google Scholar 

  16. Brott T, Thalinger K, Hertzberg V (1986) Hypertension as a risk factor for spontaneous intracerebral hemorrhage. Stroke 17:1078–1083

    Article  PubMed  CAS  Google Scholar 

  17. Gomori JM, Grossman RI, Hackney DB et al (1988) Variable appearances of subacute intracranial hematomas on high-field spin-echo MR. AJR Am J Roentgenol 150:171–178

    PubMed  CAS  Google Scholar 

  18. Viswanathan A, Chabriat H (2006) Cerebral microhemorrhage. Stroke 37:550–555

    Article  PubMed  Google Scholar 

  19. Al-Shahi R, Bhattacharya JJ, Currie DG et al (2003) Scottish Intracranial Vascular Malformation Study (SIVMS): evaluation of methods, ICD-10 coding, and potential sources of bias in a prospective, population-based cohort. Stroke 34:1156–1162

    Article  PubMed  Google Scholar 

  20. Cognard C, Gobin YP, Pierot L et al (1995) Cerebral dural arteriovenous fistulas: clinical and angiographic correlation with a revised classification of venous drainage. Radiology 194:671–680

    PubMed  CAS  Google Scholar 

  21. Yeung R, Ahmad T, Aviv RI et al (2009) Comparison of CTA to DSA in determining the etiology of spontaneous ICH. Can J Neurol Sci 36:176–180

    PubMed  Google Scholar 

  22. Romero JM, Artunduaga M, Forero N et al (2009) Accuracy of CT angiography for the diagnosis of vascular abnormalities causing intraparenchymal hemorrhage in young patients. Emerg Radiol 16:195–201

    Article  PubMed  Google Scholar 

  23. Yoon DY, Chang SK, Choi CS et al (2009) Multidetector row CT angiography in spontaneous lobar intracerebral hemorrhage: a prospective comparison with conventional angiography. AJNR Am J Neuroradiol 30:962–967

    Article  PubMed  CAS  Google Scholar 

  24. Delgado Almandoz JE, Schaefer PW, Forero NP et al (2009) Diagnostic accuracy and yield of multidetector CT angiography in the evaluation of spontaneous intraparenchymal cerebral hemorrhage. AJNR Am J Neuroradiol 30:1213–1221

    Article  PubMed  CAS  Google Scholar 

  25. Hadizadeh DR, von Falkenhausen M, Gieseke J et al (2008) Cerebral arteriovenous malformation: Spetzler-Martin classification at subsecond-temporal-resolution four-dimensional MR angiography compared with that at DSA. Radiology 246:205–213

    Article  PubMed  Google Scholar 

  26. Unlu E, Temizoz O, Albayram S et al (2006) Contrast-enhanced MR 3D angiography in the assessment of brain AVMs. Eur J Radiol 60:367–378

    Article  PubMed  Google Scholar 

  27. Taschner CA, Gieseke J, Le Thuc V et al (2008) Intracranial arteriovenous malformation: time-resolved contrast-enhanced MR angiography with combination of parallel imaging, keyhole acquisition, and k-space sampling techniques at 1.5 T. Radiology 246:871–879

    Article  PubMed  Google Scholar 

  28. Ozsarlak O, Van Goethem JW, Maes M et al (2004) MR angiography of the intracranial vessels: technical aspects and clinical applications. Neuroradiology 46:955–972

    Article  PubMed  Google Scholar 

  29. Chen JC, Tsuruda JS, Halbach VV (1992) Suspected dural arteriovenous fistula: results with screening MR angiography in seven patients. Radiology 183:265–271

    PubMed  CAS  Google Scholar 

  30. Meckel S, Maier M, Ruiz DS et al (2007) MR angiography of dural arteriovenous fistulas: diagnosis and follow-up after treatment using a time-resolved 3D contrast-enhanced technique. AJNR Am J Neuroradiol 28:877–884

    PubMed  CAS  Google Scholar 

  31. Griffiths PD, Beveridge CJ, Gholkar A (1997) Angiography in non-traumatic brain haematoma. An analysis of 100 cases. Acta Radiol 38:797–802

    PubMed  CAS  Google Scholar 

  32. Toffol GJ, Biller J, Adams HP et al (1986) The predicted value of arteriography in nontraumatic intracerebral hemorrhage. Stroke 17:881–883

    Article  PubMed  CAS  Google Scholar 

  33. Laissy JP, Normand G, Monroc M et al (1991) Spontaneous intracerebral hematomas from vascular causes. Predictive value of CT compared with angiography. Neuroradiology 33:291–295

    Article  PubMed  CAS  Google Scholar 

  34. Linn J, Halpin A, Demaerel P et al (2009) Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 74:1346–1350

    Article  Google Scholar 

  35. Greenberg SM, Briggs ME, Hyman BT et al (1996) Apolipoprotein E epsilon 4 is associated with the presence and earlier onset of hemorrhage in cerebral amyloid angiopathy. Stroke 27:1333–1337

    Article  PubMed  CAS  Google Scholar 

  36. van Rooden S, van der Grond J, van den Boom R et al (2009) Descriptive analysis of the Boston criteria applied to a Dutch-type cerebral amyloid angiopathy population. Stroke 40:3022–3027

    Article  PubMed  Google Scholar 

  37. Cooper AD, Campeau NG, Meissner I (2008) Susceptibility-weighted imaging in familial cerebral cavernous malformations. Neurology 71:382

    Article  PubMed  Google Scholar 

  38. de Souza JM, Domingues RC, Cruz LC et al (2008) Susceptibility-weighted imaging for the evaluation of patients with familial cerebral cavernous malformations: a comparison with t2-weighted fast spin-echo and gradient-echo sequences. AJNR Am J Neuroradiol 29:154–158

    Article  PubMed  Google Scholar 

  39. Lehnhardt FG, von Smekal U, Ruckriem B et al (2005) Value of gradient-echo magnetic resonance imaging in the diagnosis of familial cerebral cavernous malformation. Arch Neurol 62:653–658

    Article  PubMed  Google Scholar 

  40. Wijman CA, Venkatasubramanian C, Bruins S et al (2010) Utility of early MRI in the diagnosis and management of acute spontaneous intracerebral hemorrhage. Cerebrovasc Dis 30:456–463

    Article  PubMed  Google Scholar 

  41. Young N, Vladica P, Soo YS et al (1993) Acute intracerebral haematomas: assessment for possible underlying cause with MRI scanning. Australas Radiol 37:315–320

    Article  PubMed  CAS  Google Scholar 

  42. Dylewski DA, Demchuk AM, Morgenstern LB (2000) Utility of magnetic resonance imaging in acute intracerebral hemorrhage. J Neuroimaging 10:78–83

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Lummel.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 589 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lummel, N., Lutz, J., Brückmann, H. et al. The value of magnetic resonance imaging for the detection of the bleeding source in non-traumatic intracerebral haemorrhages: a comparison with conventional digital subtraction angiography. Neuroradiology 54, 673–680 (2012). https://doi.org/10.1007/s00234-011-0953-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-011-0953-0

Keywords

Navigation