Advertisement

Neuroradiology

, Volume 54, Issue 7, pp 673–680 | Cite as

The value of magnetic resonance imaging for the detection of the bleeding source in non-traumatic intracerebral haemorrhages: a comparison with conventional digital subtraction angiography

  • Nina LummelEmail author
  • Jürgen Lutz
  • Hartmut Brückmann
  • Jennifer Linn
Diagnostic Neuroradiology

Abstract

Introduction

Conventional digital subtraction angiography (DSA) is currently regarded as the gold standard in detecting underlying vascular pathologies in patients with intracerebral haemorrhages (ICH). However, the use of magnetic resonance imaging (MRI) in the diagnostic workup of ICHs has considerably increased in recent years. Our aim was to evaluate the diagnostic accuracy and yield of MRI for the detection of the underlying aetiology in ICH patients.

Methods

Sixty-seven consecutive patients with an acute ICH who underwent MRI (including magnetic resonance angiography (MRA) and DSA during their diagnostic workup) were included in the study. Magnetic resonance images were retrospectively analysed by two independent neuroradiologists to determine the localisation and cause of the ICH. DSA was used as a reference standard.

Results

In seven patients (10.4%), a DSA-positive vascular aetiology was present (one aneurysm, four arteriovenous malformations, one dural arteriovenous fistula and one vasculitis). All of these cases were correctly diagnosed by both readers on MRI. In addition, MRI revealed the following probable bleeding causes in 39 of the 60 DSA-negative patients: cerebral amyloid angiopathy (17), cavernoma (9), arterial hypertension (8), haemorrhagic transformation of an ischaemic infarction (3) and malignant brain tumour with secondary ICH (2).

Conclusion

Performing MRI with MRA proved to be an accurate diagnostic tool in detecting vascular malformations in patients with ICH. In addition, MRI provided valuable information regarding DSA-negative ICH causes, and thus had a high diagnostic yield in ICH patients.

Keywords

Intracerebral haemorrhage ICH MR angiography MRI DSA 

Abbreviations

AVM

Arteriovenous malformations

dAVF

Dural arterio-venous fistula

DSA

Digital subtraction angiography

DWI

Diffusion weighted imaging

CAA

Cerebral amyloid angiopathy

CI

Confidence interval

CT

Computed tomography

CTA

Computed tomography angiography

FLAIR

Fluid-attenuated inversion recovery

ICH

Intracerebral haemorrhages

IVH

Intraventricular haemorrhage

MRA

Magnetic resonance angiography

MRI

Magnetic resonance imaging

SAH

Subarachnoid haemorrhages

SWI

Susceptibility weighted imaging

T

Tesla

TOF

Time-of-flight

Notes

Conflict of interest

We declare that we have no conflict of interest.

Supplementary material

234_2011_953_MOESM1_ESM.pdf (589 kb)
ESM 1 (PDF 589 kb)

References

  1. 1.
    Qureshi AI, Tuhrim S, Broderick JP et al (2001) Spontaneous intracerebral hemorrhage. NEJM N Engl J Med 344:1450–1460CrossRefGoogle Scholar
  2. 2.
    Foulkes MA, Wolf PA, Price TR et al (1988) The Stroke Data Bank: design, methods, and baseline characteristics. Stroke 19:547–554PubMedCrossRefGoogle Scholar
  3. 3.
    Linn J, Herms J, Dichgans M et al (2008) Subarachnoid hemosiderosis and superficial cortical hemosiderosis in cerebral amyloid angiopathy. AJNR Am J Neuroradiol 29:184–186PubMedCrossRefGoogle Scholar
  4. 4.
    (1999) Arteriovenous malformations of the brain in adults: the Arteriovenous Malformation Study Group. N Engl J Med 340:1812–1818Google Scholar
  5. 5.
    Kidwell CS, Chalela JA, Saver JL et al (2004) Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA 292:1823–1830PubMedCrossRefGoogle Scholar
  6. 6.
    Fiebach JB, Schellinger PD, Gass A et al (2004) Stroke magnetic resonance imaging is accurate in hyperacute intracerebral hemorrhage: a multicenter study on the validity of stroke imaging. Stroke 35:502–506PubMedCrossRefGoogle Scholar
  7. 7.
    Kidwell CS, Wintermark M (2008) Imaging of intracranial haemorrhage. Lancet Neurol 7:256–267PubMedCrossRefGoogle Scholar
  8. 8.
    Broderick JP, Adams HP Jr, Barsan W et al (1999) Guidelines for the management of spontaneous intracerebral hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 30:905–915PubMedCrossRefGoogle Scholar
  9. 9.
    Heiserman JE, Dean BL, Hodak JA et al (1994) Neurologic complications of cerebral angiography. AJNR Am J Neuroradiol 15:1401–1407PubMedGoogle Scholar
  10. 10.
    Willinsky RA, Taylor SM, TerBrugge K et al (2003) Neurologic complications of cerebral angiography: prospective analysis of 2899 procedures and review of the literature. Radiology 227:522–528PubMedCrossRefGoogle Scholar
  11. 11.
    Dawkins AA, Evans AL, Wattam J et al (2007) Complications of cerebral angiography: a prospective analysis of 2,924 consecutive procedures. Neuroradiology 49:753–759PubMedCrossRefGoogle Scholar
  12. 12.
    Knudsen KA, Rosand J, Karluk D et al (2001) Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology 56:537–539PubMedCrossRefGoogle Scholar
  13. 13.
    Fewel ME, Thompson BG Jr, Hoff JT (2003) Spontaneous intracerebral hemorrhage: a review. Neurosurg Focus 15:1–16Google Scholar
  14. 14.
    Juvela S, Hillbom M, Palomaki H (1995) Risk factors for spontaneous intracerebral hemorrhage. Stroke 26:1558–1564PubMedCrossRefGoogle Scholar
  15. 15.
    Thrift AG, McNeil JJ, Forbes A et al (1996) Risk factors for cerebral hemorrhage in the era of well-controlled hypertension. Melbourne Risk Factor Study (MERFS) Group. Stroke 27:2020–2025PubMedCrossRefGoogle Scholar
  16. 16.
    Brott T, Thalinger K, Hertzberg V (1986) Hypertension as a risk factor for spontaneous intracerebral hemorrhage. Stroke 17:1078–1083PubMedCrossRefGoogle Scholar
  17. 17.
    Gomori JM, Grossman RI, Hackney DB et al (1988) Variable appearances of subacute intracranial hematomas on high-field spin-echo MR. AJR Am J Roentgenol 150:171–178PubMedGoogle Scholar
  18. 18.
    Viswanathan A, Chabriat H (2006) Cerebral microhemorrhage. Stroke 37:550–555PubMedCrossRefGoogle Scholar
  19. 19.
    Al-Shahi R, Bhattacharya JJ, Currie DG et al (2003) Scottish Intracranial Vascular Malformation Study (SIVMS): evaluation of methods, ICD-10 coding, and potential sources of bias in a prospective, population-based cohort. Stroke 34:1156–1162PubMedCrossRefGoogle Scholar
  20. 20.
    Cognard C, Gobin YP, Pierot L et al (1995) Cerebral dural arteriovenous fistulas: clinical and angiographic correlation with a revised classification of venous drainage. Radiology 194:671–680PubMedGoogle Scholar
  21. 21.
    Yeung R, Ahmad T, Aviv RI et al (2009) Comparison of CTA to DSA in determining the etiology of spontaneous ICH. Can J Neurol Sci 36:176–180PubMedGoogle Scholar
  22. 22.
    Romero JM, Artunduaga M, Forero N et al (2009) Accuracy of CT angiography for the diagnosis of vascular abnormalities causing intraparenchymal hemorrhage in young patients. Emerg Radiol 16:195–201PubMedCrossRefGoogle Scholar
  23. 23.
    Yoon DY, Chang SK, Choi CS et al (2009) Multidetector row CT angiography in spontaneous lobar intracerebral hemorrhage: a prospective comparison with conventional angiography. AJNR Am J Neuroradiol 30:962–967PubMedCrossRefGoogle Scholar
  24. 24.
    Delgado Almandoz JE, Schaefer PW, Forero NP et al (2009) Diagnostic accuracy and yield of multidetector CT angiography in the evaluation of spontaneous intraparenchymal cerebral hemorrhage. AJNR Am J Neuroradiol 30:1213–1221PubMedCrossRefGoogle Scholar
  25. 25.
    Hadizadeh DR, von Falkenhausen M, Gieseke J et al (2008) Cerebral arteriovenous malformation: Spetzler-Martin classification at subsecond-temporal-resolution four-dimensional MR angiography compared with that at DSA. Radiology 246:205–213PubMedCrossRefGoogle Scholar
  26. 26.
    Unlu E, Temizoz O, Albayram S et al (2006) Contrast-enhanced MR 3D angiography in the assessment of brain AVMs. Eur J Radiol 60:367–378PubMedCrossRefGoogle Scholar
  27. 27.
    Taschner CA, Gieseke J, Le Thuc V et al (2008) Intracranial arteriovenous malformation: time-resolved contrast-enhanced MR angiography with combination of parallel imaging, keyhole acquisition, and k-space sampling techniques at 1.5 T. Radiology 246:871–879PubMedCrossRefGoogle Scholar
  28. 28.
    Ozsarlak O, Van Goethem JW, Maes M et al (2004) MR angiography of the intracranial vessels: technical aspects and clinical applications. Neuroradiology 46:955–972PubMedCrossRefGoogle Scholar
  29. 29.
    Chen JC, Tsuruda JS, Halbach VV (1992) Suspected dural arteriovenous fistula: results with screening MR angiography in seven patients. Radiology 183:265–271PubMedGoogle Scholar
  30. 30.
    Meckel S, Maier M, Ruiz DS et al (2007) MR angiography of dural arteriovenous fistulas: diagnosis and follow-up after treatment using a time-resolved 3D contrast-enhanced technique. AJNR Am J Neuroradiol 28:877–884PubMedGoogle Scholar
  31. 31.
    Griffiths PD, Beveridge CJ, Gholkar A (1997) Angiography in non-traumatic brain haematoma. An analysis of 100 cases. Acta Radiol 38:797–802PubMedGoogle Scholar
  32. 32.
    Toffol GJ, Biller J, Adams HP et al (1986) The predicted value of arteriography in nontraumatic intracerebral hemorrhage. Stroke 17:881–883PubMedCrossRefGoogle Scholar
  33. 33.
    Laissy JP, Normand G, Monroc M et al (1991) Spontaneous intracerebral hematomas from vascular causes. Predictive value of CT compared with angiography. Neuroradiology 33:291–295PubMedCrossRefGoogle Scholar
  34. 34.
    Linn J, Halpin A, Demaerel P et al (2009) Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 74:1346–1350CrossRefGoogle Scholar
  35. 35.
    Greenberg SM, Briggs ME, Hyman BT et al (1996) Apolipoprotein E epsilon 4 is associated with the presence and earlier onset of hemorrhage in cerebral amyloid angiopathy. Stroke 27:1333–1337PubMedCrossRefGoogle Scholar
  36. 36.
    van Rooden S, van der Grond J, van den Boom R et al (2009) Descriptive analysis of the Boston criteria applied to a Dutch-type cerebral amyloid angiopathy population. Stroke 40:3022–3027PubMedCrossRefGoogle Scholar
  37. 37.
    Cooper AD, Campeau NG, Meissner I (2008) Susceptibility-weighted imaging in familial cerebral cavernous malformations. Neurology 71:382PubMedCrossRefGoogle Scholar
  38. 38.
    de Souza JM, Domingues RC, Cruz LC et al (2008) Susceptibility-weighted imaging for the evaluation of patients with familial cerebral cavernous malformations: a comparison with t2-weighted fast spin-echo and gradient-echo sequences. AJNR Am J Neuroradiol 29:154–158PubMedCrossRefGoogle Scholar
  39. 39.
    Lehnhardt FG, von Smekal U, Ruckriem B et al (2005) Value of gradient-echo magnetic resonance imaging in the diagnosis of familial cerebral cavernous malformation. Arch Neurol 62:653–658PubMedCrossRefGoogle Scholar
  40. 40.
    Wijman CA, Venkatasubramanian C, Bruins S et al (2010) Utility of early MRI in the diagnosis and management of acute spontaneous intracerebral hemorrhage. Cerebrovasc Dis 30:456–463PubMedCrossRefGoogle Scholar
  41. 41.
    Young N, Vladica P, Soo YS et al (1993) Acute intracerebral haematomas: assessment for possible underlying cause with MRI scanning. Australas Radiol 37:315–320PubMedCrossRefGoogle Scholar
  42. 42.
    Dylewski DA, Demchuk AM, Morgenstern LB (2000) Utility of magnetic resonance imaging in acute intracerebral hemorrhage. J Neuroimaging 10:78–83PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Nina Lummel
    • 1
    Email author
  • Jürgen Lutz
    • 1
  • Hartmut Brückmann
    • 1
  • Jennifer Linn
    • 1
  1. 1.Department of NeuroradiologyUniversity of MunichMunichGermany

Personalised recommendations