Skip to main content
Log in

Assessment of pituitary adenoma volumetric change using longitudinal MR image registration

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Change detection is a crucial factor in monitoring of slowly evolving pathologies. The objective of the study was to test a semi-automatic method applied on longitudinal MRI monitoring of volume change in pituitary macroadenomas.

Methods

The proposed method is based on a visual comparison of geometrically corrected, co-registered, intensity-normalized contrast-enhanced (CE) 3D GRE T1-weighted images. Qualitative volume changes based on this applied method were compared with experts’ readings of conventional pre- and post-CE 2D T1-weighted images. Magnetic resonance (MR) imaging was performed two to four times in 13 patients with a total combination of 29 time points.

Results

Compared to conventional 2D MR readings, a diagnosis of tumor growth (yes/no) was changed in 5 of 13 patients (38%) at 9 of the 29 combinations of time points (31%) using the 3D-based semi-automatic method. With manual tumor tracings as reference, McNemar’s test showed a significant difference between the two methods.

Conclusion

Visual comparison of geometrically corrected, intensity-normalized, and affine-aligned longitudinal 3D images may enable more accurate assessment of qualitative volumetric change in pituitary adenomas than conventional reading of 2D images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. DeLellis RLR, Heitz P, Eng C (2004) Pathology and genetics of tumours of endocrine origin. World Health Organization classification of tumours. IARC, Lyon

    Google Scholar 

  2. Asa SL, Ezzat S (2002) The pathogenesis of pituitary tumours. Nat Rev Cancer 2(11):836–849

    Article  PubMed  CAS  Google Scholar 

  3. Lundin P, Bergstrom K, Nyman R, Lundberg PO, Muhr C (1992) Macroprolactinomas: serial MR imaging in long-term bromocriptine therapy. AJNR Am J Neuroradiol 13(5):1279–1291

    PubMed  CAS  Google Scholar 

  4. Sorensen AG, Batchelor TT, Wen PY, Zhang WT, Jain RK (2008) Response criteria for glioma. Nat Clin Pract Oncol 5(11):634–644

    Article  PubMed  Google Scholar 

  5. Losa M, Valle M, Mortini P, Franzin A, da Passano CF, Cenzato M, Bianchi S, Picozzi P, Giovanelli M (2004) Gamma knife surgery for treatment of residual nonfunctioning pituitary adenomas after surgical debulking. J Neurosurg 100(3):438–444

    Article  PubMed  Google Scholar 

  6. Ertl-Wagner BB, Blume JD, Peck D, Udupa JK, Herman B, Levering A, Schmalfuss IM (2009) Reliability of tumor volume estimation from MR images in patients with malignant glioma. Results from the American College of Radiology Imaging Network (ACRIN) 6662 Trial. Eur Radiol 19(3):599–609

    Article  PubMed  Google Scholar 

  7. Wald LL SFaDA (2001) Systematic spatial distortion in MRI due to gradient nonlinearities. Proceedings of the 7th Annual Human Brain Mapping Meeting, Brighton, UK:203

  8. Jack C, Bernstein M, Fox N et al (2008) The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 27(4):685–691

    Article  PubMed  Google Scholar 

  9. Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A, Gollub R, Kennedy D, Schmitt F, Brown G, Macfall J, Fischl B, Dale A (2006) Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage 30(2):436–443

    Article  PubMed  Google Scholar 

  10. Holland D, Brewer JB, Hagler DJ, Fennema-Notestine C, Dale AM (2009) Alzheimer’s disease neuroimaging initiative. Proc Natl Acad Sci USA 106(49):20954–20959

    Google Scholar 

  11. Holland D, Dale AM (2011) Nonlinear registration of longitudinal images and measurement of change in regions of interest. Med Image Anal. doi:10.1016/j.media.2011.02.005

  12. Fryback DG, Thornbury JR (1991) The efficacy of diagnostic imaging. Med Decis Mak 11(2):88–94

    Article  CAS  Google Scholar 

  13. Steiner E, Imhof H, Knosp E (1989) Gd-DTPA enhanced high resolution MR imaging of pituitary adenomas. Radiographics 9(4):587–598

    PubMed  CAS  Google Scholar 

  14. Pohl KM, Konukoglu E, Novellas S, Ayache N, Fedorov A, Talos IF, Golby A, Wells WM, Kikinis R, Black PM (2011) A new metric for detecting change in slowly evolving brain tumors: validation in meningioma patients. Neurosurgery 68(1 Suppl Operative):225–233

    PubMed  Google Scholar 

  15. van de Langenberg R, de Bondt BJ, Nelemans PJ, Baumert BG, Stokroos RJ (2009) Follow-up assessment of vestibular schwannomas: volume quantification versus two-dimensional measurements. Neuroradiology 51(8):517–524

    Article  PubMed  Google Scholar 

  16. Wang MY, Cheng JL, Han YH, Li YL, Dou SW, Yan FS, Shi DP (2010) Comparison of volumetric methods for tumor measurements on two and three dimensional MRI in adult glioblastoma. Neuroradiology (in press)

  17. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247

    Article  PubMed  CAS  Google Scholar 

  18. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216

    Article  PubMed  CAS  Google Scholar 

  19. Soule SG, Jacobs HS (1996) The evaluation and management of subclinical pituitary disease. Postgrad Med J 72(847):258–262

    Article  PubMed  CAS  Google Scholar 

  20. Colao A, Cerbone G, Cappabianca P, Ferone D, Alfieri A, Di Salle F, Faggiano A, Merola B, de Divitiis E, Lombardi G (1998) Effect of surgery and radiotherapy on visual and endocrine function in nonfunctioning pituitary adenomas. J Endocrinol Investig 21(5):284–290

    CAS  Google Scholar 

  21. Greenman Y, Ouaknine G, Veshchev I, Reider G II, Segev Y, Stern N (2003) Postoperative surveillance of clinically nonfunctioning pituitary macroadenomas: markers of tumour quiescence and regrowth. Clin Endocrinol (Oxf) 58(6):763–769

    Article  CAS  Google Scholar 

  22. Chanson P, Borson-Chazot F, Chabre O, Estour B (2007) Drug treatment of hyperprolactinemia. Ann Endocrinol (Paris) 68(2–3):113–117

    CAS  Google Scholar 

  23. Bevan JS (2005) Clinical review: the antitumoral effects of somatostatin analog therapy in acromegaly. J Clin Endocrinol Metab 90(3):1856–1863

    Article  PubMed  CAS  Google Scholar 

  24. Freda PU, Katznelson L, van der Lely AJ, Reyes CM, Zhao S, Rabinowitz D (2005) Long-acting somatostatin analog therapy of acromegaly: a meta-analysis. J Clin Endocrinol Metab 90(8):4465–4473

    Article  PubMed  CAS  Google Scholar 

  25. Sorensen AG, Patel S, Harmath C, Bridges S, Synnott J, Sievers A, Yoon Y-H, Lee EJ, Yang MC, Lewis RF, Harris GJ, Lev M, Schaefer PW, Buchbinder BR, Barest G, Yamada K, Ponzo J, Kwon HY, Gemmete J, Farkas J, Tievsky AL, Ziegler RB, Salhus MRC, Weisskoff R (2001) Comparison of diameter and perimeter methods for tumor volume calculation. J Clin Oncol 19(2):551–557

    PubMed  CAS  Google Scholar 

  26. Joe BN, Fukui MB, Meltzer CC, Huang QS, Day RS, Greer PJ, Bozik ME (1999) Brain tumor volume measurement: comparison of manual and semiautomated methods. Radiology 212(3):811–816

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

A. Bjornerud consults for Nordic Imaging Lab. A. Dale is Founder and holds equity in Cortechs Labs Inc and also serves on its Advisory Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geir Andre Ringstad.

Additional information

Institution of work origination

Oslo University Hospital–Rikshospitalet, Sognsvannsvn 20, N-0032 Oslo, Norway

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ringstad, G.A., Emblem, K.E., Holland, D. et al. Assessment of pituitary adenoma volumetric change using longitudinal MR image registration. Neuroradiology 54, 435–443 (2012). https://doi.org/10.1007/s00234-011-0894-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-011-0894-7

Keywords

Navigation