Skip to main content

Alteration of brain viscoelasticity after shunt treatment in normal pressure hydrocephalus

Abstract

Introduction

Normal pressure hydrocephalus (NPH) represents a chronic neurological disorder with increasing incidence. The symptoms of NPH may be relieved by surgically implanting a ventriculoperitoneal shunt to drain excess cerebrospinal fluid. However, the pathogenesis of NPH is not yet fully elucidated, and the clinical response of shunt treatment is hard to predict. According to current theories of NPH, altered mechanical properties of brain tissue seem to play an important role. Magnetic resonance elastography (MRE) is a unique method for measuring in vivo brain mechanics.

Methods

In this study cerebral MRE was applied to test the viscoelastic properties of the brain in 20 patients with primary (N = 14) and secondary (N = 6) NPH prior and after (91 ± 16 days) shunt placement. Viscoelastic parameters were derived from the complex modulus according to the rheological springpot model. This model provided two independent parameters μ and α, related to the inherent rigidity and topology of the mechanical network of brain tissue.

Results

The viscoelastic parameters μ and α were found to be decreased with −25% and −10%, respectively, compared to age-matched controls (P < 0.001). Interestingly, α increased after shunt placement (P < 0.001) to almost normal values whereas μ remained symptomatically low.

Conclusion

The results indicate the fundamental role of altered viscoelastic properties of brain tissue during disease progression and tissue repair in NPH. Clinical improvement in NPH is associated with an increasing complexity of the mechanical network whose inherent strength, however, remains degraded.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Hakim S, Venegas JG, Burton JD (1976) The physics of the cranial cavity, hydrocephalus and normal pressure hydrocephalus: mechanical interpretation and mathematical model. Surg Neurol 5(3):187–210

    PubMed  CAS  Google Scholar 

  2. Levine DN (2008) Intracranial pressure and ventricular expansion in hydrocephalus: have we been asking the wrong question? J Neurol Sci 269(1–2):1–11

    PubMed  Article  Google Scholar 

  3. Penn RD, Linninger A (2009) The physics of hydrocephalus. Pediatr Neurosurg 45(3):161–174

    PubMed  Article  Google Scholar 

  4. Yamashita F, Sasaki M, Takahashi S, Matsuda H, Kudo K, Narumi S, Terayama Y, Asada T (2010) Detection of changes in cerebrospinal fluid space in idiopathic normal pressure hydrocephalus using voxel-based morphometry. Neuroradiology 52(5):381–386

    PubMed  Article  Google Scholar 

  5. Chang CC, Asada H, Mimura T, Suzuki S (2009) A prospective study of cerebral blood flow and cerebrovascular reactivity to acetazolamide in 162 patients with idiopathic normal-pressure hydrocephalus. J Neurosurg 111(3):610–617

    PubMed  Article  CAS  Google Scholar 

  6. Kondziella D, Sonnewald U, Tullberg M, Wikkelso C (2008) Brain metabolism in adult chronic hydrocephalus. J Neurochem 106(4):1515–1524

    PubMed  Article  CAS  Google Scholar 

  7. Eide PK, Stanisic M (2010) Cerebral microdialysis and intracranial pressure monitoring in patients with idiopathic normal-pressure hydrocephalus: association with clinical response to extended lumbar drainage and shunt surgery. J Neurosurg 112(2):414–424

    PubMed  Article  CAS  Google Scholar 

  8. Hebb AO, Cusimano MD (2001) Idiopathic normal pressure hydrocephalus: a systematic review of diagnosis and outcome. Neurosurgery 49(5):1166–1184, discussion 1184–1166

    PubMed  CAS  Google Scholar 

  9. Graff-Radford NR (2007) Normal pressure hydrocephalus. Neurol Clin 25(3):809–832, vii-viii

    PubMed  Article  Google Scholar 

  10. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL (1995) Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269(5232):1854–1857

    PubMed  Article  CAS  Google Scholar 

  11. Klatt D, Hamhaber U, Asbach P, Braun J, Sack I (2007) Noninvasive assessment of the rheological behavior of human internal organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. Phys Med Biol 52(24):7281–7294

    PubMed  Article  Google Scholar 

  12. Sack I, Beierbach B, Hamhaber U, Klatt D, Braun J (2008) Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography. NMR Biomed 21(3):265–271

    PubMed  Article  Google Scholar 

  13. Green MA, Bilston LE, Sinkus R (2008) In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed 21:755–764

    PubMed  Article  Google Scholar 

  14. Kruse SA, Rose GH, Glaser KJ, Manduca A, Felmlee JP, Jack CR Jr, Ehman RL (2008) Magnetic resonance elastography of the brain. Neuroimage 39(1):231–237

    PubMed  Article  Google Scholar 

  15. Sack I, Beierbach B, Wuerfel J, Klatt D, Hamhaber U, Papazoglou S, Martus P, Braun J (2009) The impact of aging and gender on brain viscoelasticity. Neuroimage 46(3):652–657

    PubMed  Article  Google Scholar 

  16. Wuerfel J, Paul F, Beierbach B, Hamhaber U, Klatt D, Papazoglou S, Zipp F, Martus P, Braun J, Sack I (2010) MR-elastography reveals degradation of tissue integrity in multiple sclerosis. Neuroimage 49(3):2520–2525

    PubMed  Article  Google Scholar 

  17. Streitberger KJ, Wiener E, Hoffmann J, Freimann FB, Klatt D, Braun J, Lin K, McLaughlin J, Sprung C, Klingebiel R, Sack I (2010) In vivo viscoelastic properties of the brain in normal pressure hydrocephalus. NMR Biomed. doi:10.1002/nbm.1602

    PubMed  Google Scholar 

  18. Mandelbrot BB (1983) The fractal geometry of nature, 1st edn. W. H. Freeman and company, New York

    Google Scholar 

  19. Riek K, Klatt D, Nuzha H, Mueller S, Neumann U, Sack I, Braun J (2011) Wide-range dynamic magnetic resonance elastography. J Biomech 44(7):1380–1386

    Google Scholar 

  20. Mori K (2001) Management of idiopathic normal-pressure hydrocephalus: a multiinstitutional study conducted in Japan. J Neurosurg 95(6):970–973

    PubMed  Article  CAS  Google Scholar 

  21. Sprung C, Miethke C, Schlosser HG, Brock M (2005) The enigma of underdrainage in shunting with hydrostatic valves and possible solutions. Acta Neurochir Suppl 95:229–235

    PubMed  Article  CAS  Google Scholar 

  22. Hakim S, Adams RD (1965) The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci 2(4):307–327

    PubMed  Article  CAS  Google Scholar 

  23. Di Rocco C, Di Trapani G, Pettorossi VE, Caldarelli M (1979) On the pathology of experimental hydrocephalus induced by artificial increase in endoventricular CSF pulse pressure. Childs brain 5(2):81–95

    PubMed  Google Scholar 

  24. Owler BK, Momjian S, Czosnyka Z, Czosnyka M, Pena A, Harris NG, Smielewski P, Fryer T, Donovan T, Coles J, Carpenter A, Pickard JD (2004) Normal pressure hydrocephalus and cerebral blood flow: a PET study of baseline values. J Cereb Blood Flow Metab 24(1):17–23

    PubMed  Article  Google Scholar 

  25. Krauss JK, Regel JP, Vach W, Orszagh M, Jungling FD, Bohus M, Droste DW (1997) White matter lesions in patients with idiopathic normal pressure hydrocephalus and in an age-matched control group: a comparative study. Neurosurgery 40(3):491–495, discussion 495–496

    PubMed  CAS  Google Scholar 

  26. Gurtovenko AA, Blumen A (2005) Generalized Gaussian structures: models for polymer systems with complex topologies. In: Polymer analysis, polymer theory. Advances in polymer science. vol 182. Springer, Berlin, pp 171–282. doi:10.1007/b135561

  27. Klatt D, Papazoglou S, Braun J, Sack I (2010) Viscoelasticity-based magnetic resonance elastography of skeletal muscle. Phys Med Biol 55:6445–6459

    PubMed  Article  Google Scholar 

  28. Toma AK, Holl E, Kitchen ND, Watkins LD (2011) Evans' index revisited: the need for an alternative in normal pressure hydrocephalus. Neurosurgery 68(4):939–944

    PubMed  Google Scholar 

  29. Shiino A, Nishida Y, Yasuda H, Suzuki M, Matsuda M, Inubushi T (2004) Magnetic resonance spectroscopic determination of a neuronal and axonal marker in white matter predicts reversibility of deficits in secondary normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 75(8):1141–1148

    PubMed  Article  CAS  Google Scholar 

  30. Osuka S, Matsushita A, Yamamoto T, Saotome K, Isobe T, Nagatomo Y, Masumoto T, Komatsu Y, Ishikawa E, Matsumura A (2010) Evaluation of ventriculomegaly using diffusion tensor imaging: correlations with chronic hydrocephalus and atrophy. J Neurosurg 112(4):832–839

    PubMed  Article  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Sprung or Ingolf Sack.

Additional information

Florian Baptist Freimann and Kaspar-Josche Streitberger have contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Freimann, F.B., Streitberger, KJ., Klatt, D. et al. Alteration of brain viscoelasticity after shunt treatment in normal pressure hydrocephalus. Neuroradiology 54, 189–196 (2012). https://doi.org/10.1007/s00234-011-0871-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-011-0871-1

Keywords

  • Normal pressure hydrocephalus
  • Shunt
  • Magnetic resonance elastography (MRE)
  • Viscoelasticity
  • Springpot