Skip to main content
Log in

Utility of susceptibility-weighted MRI in differentiating Parkinson’s disease and atypical parkinsonism

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Neuropathological studies report varying patterns of brain mineralization in Parkinson’s diseases (PD), progressive supranuclear palsy (PSP), and Parkinson variant of multiple system atrophy (MSA-P). Susceptibility-weighted imaging (SWI) is the ideal magnetic resonance imaging (MRI) technique to detect mineralization of the brain. The purpose of this study was to test if SWI can differentiate PD, PSP, and MSA-P.

Methods

Eleven patients with PD, 12 with PSP, 12 with MSA-P, and 11 healthy controls underwent SWI of the brain. Hypointensity of putamen, red nucleus, substantia nigra, and dentate nucleus in all groups were measured using an objective grading scale and scored from 0 to 3.

Results

In PSP, hypointensity score of red nucleus was higher than that in MSA-P (p = 0.001) and PD (p = 0.001), and a score of ≥2 differentiated the PSP group from the PD and MSA-P groups. Putaminal hypointensity score was higher in PSP when compared to that in PD (p = 0.003), and a score of ≥2 differentiated PSP from PD groups. SWI hypointensity scores of red nucleus and putamen had an excellent intrarater and interrater correlation. Substantia nigra hypointensity score of the PSP group was higher than that of the MSA-P (p = 0.004) and PD (p = 0.006) groups, but the scores had only a moderate intrarater and interrater correlation.

Conclusions

SWI shows different patterns of brain mineralization in clinically diagnosed groups of PD, PSP, and MSA-P and may be considered as an additional MR protocol to help differentiate these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANOVA:

One-way analysis of variance

CSF:

Cerebrospinal fluid

DTI:

Diffusion tensor imaging

DWI:

Diffusion-weighted imaging

FA:

Fractional anisotropy

FSE:

Fast spin echo

GE:

Gradient echo imaging

ICCs:

Intraclass correlation coefficients

MCP:

Middle cerebellar peduncles

MMSE:

Mini-Mental Status Examination

MSA-P:

Multiple system atrophy–Parkinson variant

NA:

Not applicable

PD:

Parkinson’s disease

PSP:

Progressive supranuclear palsy

rADC:

Regional apparent coefficient of diffusion

ROI:

Regions of interest

SI:

Signal intensity

SWI:

Susceptibility-weighted imaging

UPDRS:

Unified Parkinson Disease Rating Scale

References

  1. Gibb WRG, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51:745–752

    Article  CAS  PubMed  Google Scholar 

  2. Gilman S, Low P, Quinn N et al (1998) Consensus criteria on the diagnosis of multiple system atrophy. Clin Auton Res 8:359–362

    Article  CAS  PubMed  Google Scholar 

  3. Litvan I (2001) Diagnosis and management of progressive supranuclear palsy. Semin Neurol 21:41–48

    Article  CAS  PubMed  Google Scholar 

  4. Litvan I, Bhatia KP, Burn DJ et al (2003) SIC task force appraisal of clinical diagnostic criteria for parkinsonian disorders. Mov Disord 18:467–486

    Article  PubMed  Google Scholar 

  5. Schrag A, Good CD, Miszkiel K et al (2000) Differentiation of atypical parkinsonian syndromes with routine MRI. Neurology 54:697–702

    CAS  PubMed  Google Scholar 

  6. Seppi K, Schocke MFH (2005) An update on conventional and advanced MRI techniques in the differential diagnosis of neurodegenerative parkinsonism. Curr Opin Neurol 18:370–375

    Article  PubMed  Google Scholar 

  7. Yekhlef F, Ballan G, Macia F, Delmer O, Sourgen C, Tison F (2003) Routine MRI for the differential diagnosis of Parkinson’s disease, MSA, PSP and CBD. J Neural Transm 110:151–169

    Article  CAS  PubMed  Google Scholar 

  8. Oba H, Yagishita A, Terada H et al (2005) New and reliable MRI diagnosis for progressive supranuclear palsy. Neurology 64:2050–2055

    Article  CAS  PubMed  Google Scholar 

  9. Huber SJ, Chakeres DW, Paulson GW, Khanna R (1990) Magnetic resonance imaging in Parkinson’s disease. Arch Neurol 47:735–737

    CAS  PubMed  Google Scholar 

  10. Schocke MFH, Seppi K, Esterhammer R et al (2002) Diffusion-weighted MRI differentiates the Parkinson variant of multiple system atrophy from PD. Neurology 58:575–580

    CAS  PubMed  Google Scholar 

  11. Seppi K, Schocke MFH, Esterhammer R et al (2003) Diffusion-weighted imaging discriminates progressive supranuclear palsy from PD, but not from the Parkinson variant of multiple system atrophy. Neurology 60:922–927

    Article  CAS  PubMed  Google Scholar 

  12. Nicoletti G, Lodi R, Condino F et al (2006) Apparent diffusion coefficient measurements of the middle cerebellar peduncle differentiate the Parkinson variant of MSA from Parkinson’s disease and progressive supranuclear palsy. Brain 129:2679–2687

    Article  PubMed  Google Scholar 

  13. Paviour DC, Thornton JS, Lees AJ, Jager HR (2007) Diffusion-weighted magnetic resonance imaging differentiates parkinsonian variant of multiple-system atrophy from progressive supranuclear palsy. Mov Disord 22:68–74

    Article  PubMed  Google Scholar 

  14. Blain CRV, Barker GJ, Jarosz JM et al (2006) Measuring brain stem and cerebellar damage in parkinsonian syndromes using diffusion tensor MRI. Neurology 67:2199–2205

    Article  CAS  PubMed  Google Scholar 

  15. Davie CA, Wenning GK, Barker GJ et al (1995) Differentiation of multiple system atrophy from idiopathic Parkinson’s disease using proton magnetic resonance spectroscopy. Ann Neurol 37:204–210

    Article  CAS  PubMed  Google Scholar 

  16. Federico F, Simone IL, Lucivero V et al (1997) Proton magnetic resonance spectroscopy in Parkinson’s disease and atypical parkinsonian disorders. Mov Disord 12:903–909

    Article  CAS  PubMed  Google Scholar 

  17. Eckert T, Sailer M, Kaufmann J et al (2004) Differentiation of idiopathic Parkinson’s disease, multiple system atrophy, progressive supranuclear palsy and healthy controls using magnetization transfer imaging. NeuroImage 21:229–235

    Article  PubMed  Google Scholar 

  18. Schulz JB, Skalej M, Wedekind D et al (1999) Magnetic resonance imaging based volumetry differentiates idiopathic Parkinson’s syndrome from multiple system atrophy and progressive supranuclear palsy. Ann Neurol 45:65–74

    Article  CAS  PubMed  Google Scholar 

  19. Harder SL, Hopp KM, Ward H, Neglio H, Gitlin J, Kido D (2008) Mineralization of the deep gray matter with age: a retrospective review with susceptibility-weighted MR imaging. AJNR 29:176–183

    Article  CAS  PubMed  Google Scholar 

  20. Sehgal V, Delproposto Z, Haacke EM et al (2005) Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging 22:439–450

    Article  PubMed  Google Scholar 

  21. Dexter DT, Jenner P, Schapira AHV, Marsden CD (1992) Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. Ann Neurol 32:S94–S100

    Article  CAS  PubMed  Google Scholar 

  22. Ye QF, Allen SP, Martin WWR (1996) Basal ganglia iron content in Parkinson’s disease measured with magnetic resonance. Mov Disord 11:243–249

    Article  CAS  PubMed  Google Scholar 

  23. Burton PD, Warren O, Burger P, Johnson A, Herfkens R, Riederer S (1986) Parkinson plus syndrome: diagnosis using high field MR imaging of brain iron. Radiology 159:493–498

    Google Scholar 

  24. Hughes AJ, Daniel SE, Ben Shlomo Y, Lees AJ (2002) The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 1254:861–870

    Article  Google Scholar 

  25. Fahn S, Elton RL, Members of the UPDRS Development Committee (1987) Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Calne D, Goldstein M (eds) Recent developments in Parkinson’s disease. Macmillan Health Care Information, Florham Park, pp 153–163

    Google Scholar 

  26. Folstein MF, Folstein SE, Mc Hugh PR (1975) Mini-Mental State: a practical method for grading the cognitive stat of patients for the clinical. J Psyhciatr Res 12:189–198

    Article  CAS  Google Scholar 

  27. Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618

    Article  PubMed  Google Scholar 

  28. Thomas B, Somasundaram S, Thamburaj K et al (2008) Clinical applications of susceptibility weighted MR imaging of the brain—a pictorial review. Neuroradiology 50:105–116

    Article  PubMed  Google Scholar 

  29. Collins SJ, Ahlskog JE, Parisi JE, Maraganore DM (1995) Progressive supranuclear palsy: neuropathologically based diagnostic clinical criteria. J Neurol Neurosurg Psychiatry 58:167–173

    Article  CAS  PubMed  Google Scholar 

  30. Lang AE, Lozano MA (1998) Parkinson’s disease—first of two parts. N Engl J Med 339:1044–1053

    Article  CAS  PubMed  Google Scholar 

  31. Wenning GK, Tison F, Ben-Shlomo Y, Daniel SE, Quinn NP (1997) Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord 12:133–147

    Article  CAS  PubMed  Google Scholar 

  32. Haacke EM, Cheng NY, House MJ et al (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23:1–25

    Article  CAS  PubMed  Google Scholar 

  33. Gerlach M, Ben-Shachar D, Riederer P, Youdim MB (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem 63:793–807

    Article  CAS  PubMed  Google Scholar 

  34. von Lewinski F, Werner C, Jörn T, Mohr A, Sixel-Döring F, Trenkwalder C et al (2007) T2*-weighted MRI in diagnosis of multiple system atrophy. J Neurol 254:1184–1188

    Article  Google Scholar 

  35. Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51

    Article  CAS  PubMed  Google Scholar 

  36. Martin WWR, Ye FQ, Allen PS (1998) Increasing striatal iron content associated with normal aging. Mov Disord 13:281–286

    Article  CAS  PubMed  Google Scholar 

  37. Kraft E, Trenkwalder C, Auer PD (2002) T2*-weighted MRI differentiates multiple system atrophy from Parkinson’s disease. Neurology 59:1265–1267

    PubMed  Google Scholar 

  38. Gelman N, Gorell JM, Barker PB et al (1999) MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology 210:759–767

    CAS  PubMed  Google Scholar 

  39. Bartzokis G, Mintz J, Sultzer D et al (1994) In vivo MR evaluation of age-related increases in brain iron. AJNR 15:1129–1138

    CAS  PubMed  Google Scholar 

  40. Reichenbach JR, Venkatesan R, Yablonskiy DA et al (1997) Theory and application of static field inhomogeneity effects in gradient-echo imaging. J Magn Reson Imaging 7:266–279

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially funded by the authors’ institute (project number 5181).

We thank Mr. Gangadhara Sarma for the assistance in co-coordinating the study.

We thank the subjects for their participation in the study.

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asha Kishore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, D., Saini, J., Kesavadas, C. et al. Utility of susceptibility-weighted MRI in differentiating Parkinson’s disease and atypical parkinsonism. Neuroradiology 52, 1087–1094 (2010). https://doi.org/10.1007/s00234-010-0677-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-010-0677-6

Keywords

Navigation