Skip to main content

Advertisement

Log in

Diffusion tensor imaging (DTI) and tractography of the brachial plexus: feasibility and initial experience in neoplastic conditions

  • Head and Neck Radiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The objective of this study was to assess the feasibility and potential clinical applications of diffusion tensor imaging (DTI) and tractography in the normal and pathologic brachial plexus prospectively.

Methods

Six asymptomatic volunteers and 12 patients with symptoms related to the brachial plexus underwent DTI on a 1.5T system in addition to the routine anatomic plexus imaging protocol. Maps of the apparent diffusion coefficient (ADC) and of fractional anisotropy (FA), as well as tractography of the brachial plexus were obtained. Images were evaluated by two experienced neuroradiologists in a prospective fashion. Three patients underwent surgery, and nine patients underwent conservative medical treatment.

Results

Reconstructed DTI (17/18) were of good quality (one case could not be reconstructed due to artifacts). In all volunteers and in 11 patients, the roots and the trunks were clearly delineated with tractography. Mean FA and mean ADC values were as follows: 0.30 ± 0.079 and 1.70 ± 0.35 mm2/s in normal fibers, 0.22 ± 0.04 and 1.49 ± 0.49 mm2/s in benign neurogenic tumors, and 0.24 ± 0.08 and 1.51 ± 0.52 mm2/s in malignant tumors, respectively. Although there was no statistically significant difference in FA and ADC values of normal fibers and fibers at the level of pathology, tractography revealed major differences regarding fiber architecture. In benign neurogenic tumors (n = 4), tractography revealed fiber displacement alone (n = 2) or fiber displacement and encasement by the tumor (n = 2), whereas in the malignant tumors, either fiber disruption/destruction with complete disorganization (n = 6) or fiber displacement (n = 1) were seen. In patients with fiber displacement alone, surgery confirmed the tractography findings, and excision was successful without sequelae.

Conclusion

Our preliminary data suggest that DTI with tractography is feasible in a clinical routine setting. DTI may demonstrate normal tracts, tract displacement, deformation, infiltration, disruption, and disorganization of fibers due to tumors located within or along the brachial plexus, therefore, yielding additional information to the current standard anatomic imaging protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mori S, Kaufmann WE, Davatzikos C, Stieltjes B, Amodei L, Fredericksen K, Pearlson GD, Melhem ER, Solaiyappan M, Raymond GV, Moser HW, van Zijl PC (2002) Imaging cortical association tracts in the human brain using diffusion-tensor-based axonal tracking. Magn Reson Med 47:215–223

    Article  PubMed  Google Scholar 

  2. Mori S, Crain BJ, Chacko VP, van Zijl PCM (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269

    Article  CAS  PubMed  Google Scholar 

  3. Vargas MI, Delavelle J, Jlassi H, Rilliet B, Viallon M, Becker CD, Lövblad KO (2008) Clinical applications of diffusion tensor tractography of the spinal cord. Neuroradiology 50(1):25–29 Epub 2007 Oct 2

    Article  PubMed  Google Scholar 

  4. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201(3):637–648

    CAS  PubMed  Google Scholar 

  5. Bammer R, Acar B, Moseley ME (2003) In vivo MR tractography using diffusion imaging. Eur J Radiol 45:223–234

    Article  PubMed  Google Scholar 

  6. Gillard JH, Papadakis NG, Martin K, Price CJ, Warburton EA, Antoun NM, Huang CL, Carpenter TA, Pickard JD (2001) MR diffusion tensor imaging of white matter tract disruption in stroke at 3 T. Br J Radiol 74(883):642–647

    CAS  PubMed  Google Scholar 

  7. Shimony JS, McKinstry RC, Akbudak E, Aronovitz JA, Snyder AZ, Lori NF, Cull TS, Conturo TE (1999) Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis. Radiology 212(3):770–784

    CAS  PubMed  Google Scholar 

  8. Wieshmann UC, Clark CA, Symms MR, Franconi F, Barker GJ, Shorvon SD (1999) Reduced anisotropy of water diffusion in structural cerebral abnormalities demonstrated with diffusion tensor imaging. Magn Reson Imaging 17(9):1269–1274

    Article  CAS  PubMed  Google Scholar 

  9. Clark CA, Werring DJ (2002) Diffusion tensor imaging in spinal cord: methods and applications - a review. NMR Biomed 15(7–8):578–586 Review

    Article  PubMed  Google Scholar 

  10. Wheeler-Kingshott CA, Hickman SJ, Parker GJ, Ciccarelli O, Symms MR, Miller DH, Barker GJ (2002) Investigating cervical spinal cord structure using axial diffusion tensor imaging. Neuroimage 16(1):93–102

    Article  PubMed  Google Scholar 

  11. Ducreux D, Lepeintre JF, Fillard P, Loureiro C, Tadié M, Lasjaunias P (2006) MR diffusion tensor imaging and fiber tracking in 5 spinal cord astrocytomas. AJNR Am J Neuroradiol 27(1):214–216

    CAS  PubMed  Google Scholar 

  12. Hiltunen J, Suortti T, Arvela S, Seppä M, Joensuu R, Hari R (2005) Diffusion tensor imaging and tractography of distal peripheral nerves at 3 T. Clin Neurophysiol 116(10):2315–2323

    Article  PubMed  Google Scholar 

  13. Skorpil M, Engström M, Nordell A (2007) Diffusion-direction-dependent imaging: a novel MRI approach for peripheral nerve imaging. Magn Reson Imaging 25(3):406–411

    Article  PubMed  Google Scholar 

  14. Khalil C, Hancart C, Le Thuc V, Chantelot C, Chechin D, Cotten A (2008) Diffusion tensor imaging and tractography of the median nerve in carpal tunnel syndrome: preliminary results. Eur Radiol 18(10):2283–2291 Epub 2008 Apr 17

    Article  CAS  PubMed  Google Scholar 

  15. Renoux J, Facon D, Fillard P, Huynh I, Lasjaunias P, Ducreux D (2006) MR diffusion tensor imaging and fiber tracking in inflammatory diseases of the spinal cord. AJNR Am J Neuroradiol 27(9):1947–1951

    CAS  PubMed  Google Scholar 

  16. Takahara T, Hendrikse J, Yamashita T, Mali WP, Kwee TC, Imai Y, Luijten PR (2008) Diffusion-weighted MR neurography of the brachial plexus: feasibility study. Radiology 249(2):653–660

    Article  PubMed  Google Scholar 

  17. Tsuchiya K, Imai M, Tateishi H et al (2007) Neurography of the spinal nerve roots by diffusion tensor scanning applying motion-probing gradients in six directions. Magn Reson Med Sci 6(1):1–5

    Article  PubMed  Google Scholar 

  18. Viallon M, Vargas MI, Jlassi H, Lövblad KO, Delavelle J (2008) High-resolution and functional magnetic resonance imaging of the brachial plexus using an isotropic 3D T2 STIR (Short Term Inversion Recovery) SPACE sequence and diffusion tensor imaging. Eur Radiol 18(5):1018–1023

    Article  CAS  PubMed  Google Scholar 

  19. Hagmann P, Thiran JP, Jonasson L, Vandergheynst P, Clarke S, Maeder P, Meuli R (2003) DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection. Neuroimage 19:545–554

    Article  CAS  PubMed  Google Scholar 

  20. Kristoffersen A (2009) Diffusion measurements and diffusion tensor imaging with noisy magnitude data. J Magn Reson Imaging 29(1):237–241

    Article  PubMed  Google Scholar 

  21. Parker GJ, Haroon HA, Wheeler-Kingshott CA (2003) A framework for a streamline-based probabilistic index of connectivity (PICO) using a structural interpretation of MRI diffusion measurements. J Magn Reson Imaging 18:242–254

    Article  PubMed  Google Scholar 

  22. Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews PM, Brady JM, Smith SM (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50:1077–1088

    Article  CAS  PubMed  Google Scholar 

  23. Ozturk A, Sasson AD, Farrell JA, Landman BA, da Motta AC, Aralasmak A, Yousem DM (2008) Regional differences in diffusion tensor imaging measurements: assessment of intrarater and interrater variability. AJNR Am J Neuroradiol 29(6):1124–1127

    Article  CAS  PubMed  Google Scholar 

  24. Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, Hua K, Zhang J, Jiang H, Dubey P, Blitz A, van Zijl P, Mori S (2007) Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36(3):630–644

    Article  PubMed  Google Scholar 

  25. Chawla S, Kim S, Wang S, Poptani H (2009) Diffusion-weighted imaging in head and neck cancers. Future Oncol 5(7):959–975

    Article  PubMed  Google Scholar 

  26. Vandecaveye V, De Keyzer F, Vander Poorten V et al (2009) Head and neck squamous cell carcinoma: value of diffusion-weighted MR imaging for nodal staging. Radiology 251(1):134–146

    Article  PubMed  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Isabel Vargas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vargas, M.I., Viallon, M., Nguyen, D. et al. Diffusion tensor imaging (DTI) and tractography of the brachial plexus: feasibility and initial experience in neoplastic conditions. Neuroradiology 52, 237–245 (2010). https://doi.org/10.1007/s00234-009-0643-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-009-0643-3

Keywords

Navigation