Neuroradiology

, Volume 52, Issue 1, pp 15–24

Neuroimaging after coma

  • Luaba Tshibanda
  • Audrey Vanhaudenhuyse
  • Mélanie Boly
  • Andrea Soddu
  • Marie-Aurelie Bruno
  • Gustave Moonen
  • Steven Laureys
  • Quentin Noirhomme
Invited Review

Abstract

Following coma, some patients will recover wakefulness without signs of consciousness (only showing reflex movements, i.e., the vegetative state) or may show non-reflex movements but remain without functional communication (i.e., the minimally conscious state). Currently, there remains a high rate of misdiagnosis of the vegetative state (Schnakers et. al. BMC Neurol, 9:35, 8) and the clinical and electrophysiological markers of outcome from the vegetative and minimally conscious states remain unsatisfactory. This should incite clinicians to use multimodal assessment to detect objective signs of consciousness and validate para-clinical prognostic markers in these challenging patients. This review will focus on advanced magnetic resonance imaging (MRI) techniques such as magnetic resonance spectroscopy, diffusion tensor imaging, and functional MRI (fMRI studies in both “activation” and “resting state” conditions) that were recently introduced in the assessment of patients with chronic disorders of consciousness.

Keywords

Vegetative state Diffusion tensor imaging MR spectroscopy Functional MRI Consciousness 

References

  1. 1.
    Laureys S, Boly M (2008) The changing spectrum of coma. Nat Clin Pract Neurol 4(10):544–546CrossRefPubMedGoogle Scholar
  2. 2.
    Posner J, Saper C, Schiff N, Plum F (2007) Plum and Posner's diagnosis of stupor and coma. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    The Multi-Society Task Force on PVS (1994) Medical aspects of the persistent vegetative state (1). N Engl J Med 330(21):1499–1508CrossRefGoogle Scholar
  4. 4.
    Giacino JT, Ashwal S, Childs N, Cranford R, Jennett B, Katz DI, Kelly JP, Rosenberg JH, Whyte J, Zafonte RD, Zasler ND (2002) The minimally conscious state: definition and diagnostic criteria. Neurology 58(3):349–353PubMedGoogle Scholar
  5. 5.
    American Congress of Rehabilitation Medicine (1995) Recommendations for use of uniform nomenclature pertinent to patients with severe alterations of consciousness. Arch Phys Med Rehabil 76:205–209CrossRefGoogle Scholar
  6. 6.
    Andrews K, Murphy L, Munday R, Littlewood C (1996) Misdiagnosis of the vegetative state: retrospective study in a rehabilitation unit. BMJ 313(7048):13–16PubMedGoogle Scholar
  7. 7.
    Childs NL, Mercer WN (1996) Misdiagnosing the persistent vegetative state. Misdiagnosis certainly occurs [letter; comment]. BMJ 313(7062):944PubMedGoogle Scholar
  8. 8.
    Schnakers C, Vanhaudenhuyse A, Giacino J, Ventura M, Boly M, Majerus S, Moonen G, Laureys S (2009) Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment. BMC Neurol 9:35CrossRefPubMedGoogle Scholar
  9. 9.
    Giacino JT, Hirsch J, Schiff N, Laureys S (2006) Functional neuroimaging applications for assessment and rehabilitation planning in patients with disorders of consciousness. Arch Phys Med Rehabil 87(12 Suppl):67–76CrossRefGoogle Scholar
  10. 10.
    Parvizi J, Damasio A (2001) Consciousness and the brainstem. Cognition 79(1–2):135–160CrossRefPubMedGoogle Scholar
  11. 11.
    Laureys S, Goldman S, Phillips C, Van Bogaert P, Aerts J, Luxen A, Franck G, Maquet P (1999) Impaired effective cortical connectivity in vegetative state. Neuroimage 9(4):377–382CrossRefPubMedGoogle Scholar
  12. 12.
    Weiss N, Galanaud D, Carpentier A, Naccache L, Puybasset L (2007) Clinical review: prognostic value of magnetic resonance imaging in acute brain injury and coma. Crit Care 11(5):230CrossRefPubMedGoogle Scholar
  13. 13.
    Huisman TA, Schwamm LH, Schaefer PW, Koroshetz WJ, Shetty-Alva N, Ozsunar Y, Wu O, Sorensen AG (2004) Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR Am J Neuroradiol 25(3):370–376PubMedGoogle Scholar
  14. 14.
    Marino S, Zei E, Battaglini M, Vittori C, Buscalferri A, Bramanti P, Federico A, De Stefano N (2007) Acute metabolic brain changes following traumatic brain injury and their relevance to clinical severity and outcome. J Neurol Neurosurg Psychiatry 78(5):501–507CrossRefPubMedGoogle Scholar
  15. 15.
    Ross BD, Ernst T, Kreis R, Haseler LJ, Bayer S, Danielsen E, Bluml S, Shonk T, Mandigo JC, Caton W, Clark C, Jensen SW, Lehman NL, Arcinue E, Pudenz R, Shelden CH (1998) 1H MRS in acute traumatic brain injury. J Magn Reson Imaging 8(4):829–840CrossRefPubMedGoogle Scholar
  16. 16.
    Trivedi MA, Ward MA, Hess TM, Gale SD, Dempsey RJ, Rowley HA, Johnson SC (2007) Longitudinal changes in global brain volume between 79 and 409 days after traumatic brain injury: relationship with duration of coma. J Neurotrauma 24(5):766–771CrossRefPubMedGoogle Scholar
  17. 17.
    Ricci R, Arbarella G, Musi P, Oldrini P, Revisan C, Asaglia N (1997) Localised proton MR spectroscopy of brain metabolism changes in vegetative patients. Neuroradiology 39:313–319CrossRefPubMedGoogle Scholar
  18. 18.
    Friedman SD, Brooks WM, Jung RE, Chiulli SJ, Sloan JH, Montoya BT, Hart BL, Yeo RA (1999) Quantitative proton MRS predicts outcome after traumatic brain injury. Neurology 52(7):1384–1391PubMedGoogle Scholar
  19. 19.
    Sinson G, Bagley LJ, Cecil KM, Torchia M, McGowan JC, Lenkinski RE, McIntosh TK, Grossman RI (2001) Magnetization transfer imaging and proton MR spectroscopy in the evaluation of axonal injury: correlation with clinical outcome after traumatic brain injury. AJNR Am J Neuroradiol 22(1):143–123PubMedGoogle Scholar
  20. 20.
    Uzan M, Albayram S, Dashti SG, Aydin S, Hanci M, Kuday C (2003) Thalamic proton magnetic resonance spectroscopy in vegetative state induced by traumatic brain injury. J Neurol Neurosurg Psychiatry 74(1):33–38CrossRefPubMedGoogle Scholar
  21. 21.
    Carpentier A, Galanaud D, Puybasset L, Muller JC, Lescot T, Boch AL, Riedl V, Cornu P, Coriat P, Dormont D, van Effenterre R (2006) Early morphologic and spectroscopic magnetic resonance in severe traumatic brain injuries can detect "invisible brain stem damage" and predict "vegetative states". J Neurotrauma 23(5):674–685CrossRefPubMedGoogle Scholar
  22. 22.
    Garnett MR, Blamire AM, Corkill RG, Cadoux-Hudson TA, Rajagopalan B, Styles P (2000) Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. Brain 123(Pt 10):2046–2054CrossRefPubMedGoogle Scholar
  23. 23.
    Choe BY, Suh TS, Choi KH, Shinn KS, Park CK, Kang JK (1995) Neuronal dysfunction in patients with closed head injury evaluated by in vivo 1H magnetic resonance spectroscopy. Invest Radiol 30(8):502–506CrossRefPubMedGoogle Scholar
  24. 24.
    Tollard E, Galanaud D, Perlbarg V, Sanchez-Pena P, Le Fur Y, Abdennour L, Cozzone P, Lehericy S, Chiras J, Puybasset L (2009) Experience of diffusion tensor imaging and 1H spectroscopy for outcome prediction in severe traumatic brain injury: preliminary results. Crit Care Med 37(4):1448–1455CrossRefPubMedGoogle Scholar
  25. 25.
    Gerber DJ, Weintraub AH, Cusick CP, Ricci PE, Whiteneck GG (2004) Magnetic resonance imaging of traumatic brain injury: relationship of T2*SE and T2GE to clinical severity and outcome. Brain Inj 18(11):1083–1097CrossRefPubMedGoogle Scholar
  26. 26.
    Scheid R, Preul C, Gruber O, Wiggins C, von Cramon DY (2003) Diffuse axonal injury associated with chronic traumatic brain injury: evidence from T2*-weighted gradient-echo imaging at 3 T. AJNR Am J Neuroradiol 24(6):1049–1056PubMedGoogle Scholar
  27. 27.
    Jennett B, Bond M (1975) Assessment of outcome after severe brain damage. Lancet 1(7905):480–484CrossRefPubMedGoogle Scholar
  28. 28.
    Yanagawa Y, Tsushima Y, Tokumaru A, Un-no Y, Sakamoto T, Okada Y, Nawashiro H, Shima K (2000) A quantitative analysis of head injury using T2*-weighted gradient-echo imaging. J Trauma 49(2):272–277CrossRefPubMedGoogle Scholar
  29. 29.
    Levin HS, Mendelsohn D, Lilly MA, Yeakley J, Song J, Scheibel RS, Harward H, Fletcher JM, Kufera JA, Davidson KC, Bruce D (1997) Magnetic resonance imaging in relation to functional outcome of pediatric closed head injury: a test of the Ommaya–Gennarelli model. Neurosurgery 40(3):432–441 discussion 440–431CrossRefPubMedGoogle Scholar
  30. 30.
    Kampfl A, Schmutzhard E, Franz G, Pfausler B, Haring HP, Ulmer H, Felber S, Golaszewski S, Aichner F (1998) Prediction of recovery from post-traumatic vegetative state with cerebral magnetic-resonance imaging. Lancet 351(9118):1763–1767CrossRefPubMedGoogle Scholar
  31. 31.
    Kampfl A, Franz G, Aichner F, Pfausler B, Haring HP, Felber S, Luz G, Schocke M, Schmutzhard E (1998) The persistent vegetative state after closed head injury: clinical and magnetic resonance imaging findings in 42 patients. J Neurosurg 88(5):809–816CrossRefPubMedGoogle Scholar
  32. 32.
    Firsching R, Woischneck D, Diedrich M, Klein S, Ruckert A, Wittig H, Dohring W (1998) Early magnetic resonance imaging of brainstem lesions after severe head injury. J Neurosurg 89(5):707–712CrossRefPubMedGoogle Scholar
  33. 33.
    Wedekind C, Fischbach R, Pakos P, Terhaag D, Klug N (1999) Comparative use of magnetic resonance imaging and electrophysiologic investigation for the prognosis of head injury. J Trauma 47(1):44–49CrossRefPubMedGoogle Scholar
  34. 34.
    Hoelper BM, Soldner F, Chone L, Wallenfang T (2000) Effect of intracerebral lesions detected in early MRI on outcome after acute brain injury. Acta Neurochir Suppl 76:265–267PubMedGoogle Scholar
  35. 35.
    Paterakis K, Karantanas AH, Komnos A, Volikas Z (2000) Outcome of patients with diffuse axonal injury: the significance and prognostic value of MRI in the acute phase. J Trauma 49(6):1071–1075CrossRefPubMedGoogle Scholar
  36. 36.
    Karantanas A, Paterakis K (2000) Magnetic resonance imaging and brainstem injury. J Neurosurg 92(5):896–897PubMedGoogle Scholar
  37. 37.
    Schaefer PW, Huisman TA, Sorensen AG, Gonzalez RG, Schwamm LH (2004) Diffusion-weighted MR imaging in closed head injury: high correlation with initial glasgow coma scale score and score on modified Rankin scale at discharge. Radiology 233(1):58–66CrossRefPubMedGoogle Scholar
  38. 38.
    Galanaud D, Naccache L, Puybasset L (2007) Exploring impaired consciousness: the MRI approach. Curr Opin Neurol 20(6):627–631CrossRefPubMedGoogle Scholar
  39. 39.
    Weiss N, Galanaud D, Carpentier A, Tezenas de Montcel S, Naccache L, Coriat P, Puybasset L (2008) A combined clinical and MRI approach for outcome assessment of traumatic head injured comatose patients. J Neurol 255(2):217–223CrossRefPubMedGoogle Scholar
  40. 40.
    Huisman TA, Loenneker T, Barta G, Bellemann ME, Hennig J, Fischer JE, Il'yasov KA (2006) Quantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalars. Eur Radiol 16(8):1651–1658CrossRefPubMedGoogle Scholar
  41. 41.
    Jones DK, Dardis R, Ervine M, Horsfield MA, Jeffree M, Simmons A, Jarosz J, Strong AJ (2000) Cluster analysis of diffusion tensor magnetic resonance images in human head injury. Neurosurgery 47(2):306–313 discussion 313–304CrossRefPubMedGoogle Scholar
  42. 42.
    Huisman TA, Sorensen AG, Hergan K, Gonzalez RG, Schaefer PW (2003) Diffusion-weighted imaging for the evaluation of diffuse axonal injury in closed head injury. J Comput Assist Tomogr 27(1):5–11CrossRefPubMedGoogle Scholar
  43. 43.
    Arfanakis K, Haughton VM, Carew JD, Rogers BP, Dempsey RJ, Meyerand ME (2002) Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol 23(5):794–802PubMedGoogle Scholar
  44. 44.
    Xu J, Rasmussen IA, Lagopoulos J, Haberg A (2007) Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution diffusion tensor imaging. J Neurotrauma 24(5):753–765CrossRefPubMedGoogle Scholar
  45. 45.
    Filippi CG, Ulug AM, Ryan E, Ferrando SJ, van Gorp W (2001) Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MR images of the brain. AJNR Am J Neuroradiol 22(2):277–283PubMedGoogle Scholar
  46. 46.
    Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet 2(7872):81–84CrossRefPubMedGoogle Scholar
  47. 47.
    Perlbarg V, Puybasset L, Tollard E, Lehericy S, Benali H, Galanaud D (2009) Relation between brain lesion location and clinical outcome in patients with severe traumatic brain injury: A diffusion tensor imaging study using voxel-based approaches. Hum Brain Mapp in pressGoogle Scholar
  48. 48.
    Voss HU, Uluc AM, Dyke JP, Watts R, Kobylarz EJ, McCandliss BD, Heier LA, Beattie BJ, Hamacher KA, Vallabhajosula S, Goldsmith SJ, Ballon D, Giacino JT, Schiff ND (2006) Possible axonal regrowth in late recovery from the minimally conscious state. J Clin Invest 116(7):2005–2011CrossRefPubMedGoogle Scholar
  49. 49.
    Cecil KM, Hills EC, Sandel ME, Smith DH, McIntosh TK, Mannon LJ, Sinson GP, Bagley LJ, Grossman RI, Lenkinski RE (1998) Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. J Neurosurg 88(5):795–801CrossRefPubMedGoogle Scholar
  50. 50.
    Pouwels PJ, Frahm J (1998) Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magn Reson Med 39(1):53–60CrossRefPubMedGoogle Scholar
  51. 51.
    Baslow MH, Hrabe J, Guilfoyle DN (2007) Dynamic relationship between neurostimulation and N-acetylaspartate metabolism in the human visual cortex: evidence that NAA functions as a molecular water pump during visual stimulation. J Mol Neurosci 32(3):235–245CrossRefPubMedGoogle Scholar
  52. 52.
    Baslow MH, Suckow RF, Gaynor K, Bhakoo KK, Marks N, Saito M, Saito M, Duff K, Matsuoka Y, Berg MJ (2003) Brain damage results in down-regulation of N-acetylaspartate as a neuronal osmolyte. Neuromolecular Med 3(2):95–104CrossRefPubMedGoogle Scholar
  53. 53.
    Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM (2007) N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 81(2):89–131CrossRefPubMedGoogle Scholar
  54. 54.
    Cecil KM, Lenkinski RE, Meaney DF, McIntosh TK, Smith DH (1998) High-field proton magnetic resonance spectroscopy of a swine model for axonal injury. J Neurochem 70(5):2038–2044PubMedCrossRefGoogle Scholar
  55. 55.
    Holshouser BA, Tong KA, Ashwal S, Oyoyo U, Ghamsary M, Saunders D, Shutter L (2006) Prospective longitudinal proton magnetic resonance spectroscopic imaging in adult traumatic brain injury. J Magn Reson Imaging 24(1):33–40CrossRefPubMedGoogle Scholar
  56. 56.
    Signoretti S, Marmarou A, Fatouros P, Hoyle R, Beaumont A, Sawauchi S, Bullock R, Young H (2002) Application of chemical shift imaging for measurement of NAA in head injured patients. Acta Neurochir Suppl 81:373–375PubMedGoogle Scholar
  57. 57.
    Castillo M, Kwock L, Mukherji SK (1996) Clinical applications of proton MR spectroscopy. AJNR Am J Neuroradiol 17(1):1–15PubMedGoogle Scholar
  58. 58.
    Wood SJ, Berger G, Velakoulis D, Phillips LJ, McGorry PD, Yung AR, Desmond P, Pantelis C (2003) Proton magnetic resonance spectroscopy in first episode psychosis and ultra high-risk individuals. Schizophr Bull 29(4):831–843PubMedGoogle Scholar
  59. 59.
    Lewine JD, Davis JT, Sloan JH, Kodituwakku PW, Orrison WW Jr (1999) Neuromagnetic assessment of pathophysiologic brain activity induced by minor head trauma. AJNR Am J Neuroradiol 20(5):857–866PubMedGoogle Scholar
  60. 60.
    Bekinschtein T, Tiberti C, Niklison J, Tamashiro M, Carpintiero S, Villarreal M, Forcato C, Leiguarda R, Manes F (2005) Assessing level of consciousness and cognitive changes from vegetative state to full recovery. Neuropsychol Rehabil 15(3/4):307–322CrossRefPubMedGoogle Scholar
  61. 61.
    Coleman MR, Davis MH, Rodd JM, Robson T, Ali A, Owen AM, Pickard JD (2009) Towards the routine use of brain imaging to aid the clinical diagnosis of disorders of consciousness. Brain 132(Pt 9):2541–2552CrossRefPubMedGoogle Scholar
  62. 62.
    Coleman MR, Rodd JM, Davis MH, Johnsrude IS, Menon DK, Pickard JD, Owen AM (2007) Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. Brain 130(10):2494–2507CrossRefPubMedGoogle Scholar
  63. 63.
    Di HB, Yu SM, Weng XC, Laureys S, Yu D, Li JQ, Qin PM, Zhu YH, Zhang SZ, Chen YZ (2007) Cerebral response to patient's own name in the vegetative and minimally conscious states. Neurology 68(12):895–899CrossRefPubMedGoogle Scholar
  64. 64.
    Fernandez-Espejo D, Junque C, Vendrell P, Bernabeu M, Roig T, Bargallo N, Mercader JM (2008) Cerebral response to speech in vegetative and minimally conscious states after traumatic brain injury. Brain Inj 22(11):882–890CrossRefPubMedGoogle Scholar
  65. 65.
    Moritz CH, Rowley HA, Haughton VM, Swartz KR, Jones J, Badie B (2001) Functional MR imaging assessment of a non-responsive brain injured patient. Magn Reson Imaging 19(8):1129–1132CrossRefPubMedGoogle Scholar
  66. 66.
    Staffen W, Kronbichler M, Aichhorn M, Mair A, Ladurner G (2006) Selective brain activity in response to one's own name in the persistent vegetative state. J Neurol Neurosurg Psychiatry 77(12):1383–1384CrossRefPubMedGoogle Scholar
  67. 67.
    Boly M, Faymonville ME, Peigneux P, Lambermont B, Damas F, Luxen A, Lamy M, Moonen G, Maquet P, Laureys S (2005) Cerebral processing of auditory and noxious stimuli in severely brain injured patients: differences between VS and MCS. Neuropsychol Rehabil 15(3–4):283–289CrossRefPubMedGoogle Scholar
  68. 68.
    Boly M, Faymonville ME, Peigneux P, Lambermont B, Damas P, Del Fiore G, Degueldre C, Franck G, Luxen A, Lamy M, Moonen G, Maquet P, Laureys S (2004) Auditory processing in severely brain injured patients: differences between the minimally conscious state and the persistent vegetative state. Arch Neurol 61(2):233–238CrossRefPubMedGoogle Scholar
  69. 69.
    Laureys S, Faymonville ME, Degueldre C, Fiore GD, Damas P, Lambermont B, Janssens N, Aerts J, Franck G, Luxen A, Moonen G, Lamy M, Maquet P (2000) Auditory processing in the vegetative state. Brain 123(8):1589–1601CrossRefPubMedGoogle Scholar
  70. 70.
    Owen AM, Menon DK, Johnsrude IS, Bor D, Scott SK, Manly T, Williams EJ, Mummery C, Pickard JD (2002) Detecting residual cognitive function in persistent vegetative state. Neurocase 8(5):394–403CrossRefPubMedGoogle Scholar
  71. 71.
    Boly M, Faymonville ME, Schnakers C, Peigneux P, Lambermont B, Phillips C, Lancellotti P, Luxen A, Lamy M, Moonen G, Maquet P, Laureys S (2008) Perception of pain in the minimally conscious state with PET activation: an observational study. Lancet Neurol. 7:1013–20CrossRefPubMedGoogle Scholar
  72. 72.
    Menon DK, Owen AM, Williams EJ, Minhas PS, Allen CM, Boniface SJ, Pickard JD (1998) Cortical processing in persistent vegetative state. Lancet 352(9123):200CrossRefPubMedGoogle Scholar
  73. 73.
    Schiff ND, Rodriguez-Moreno D, Kamal A, Kim KH, Giacino JT, Plum F, Hirsch J (2005) fMRI reveals large-scale network activation in minimally conscious patients. Neurology 64(3):514–523PubMedGoogle Scholar
  74. 74.
    Laureys S, Perrin F, Faymonville ME, Schnakers C, Boly M, Bartsch V, Majerus S, Moonen G, Maquet P (2004) Cerebral processing in the minimally conscious state. Neurology 63(5):916–918PubMedGoogle Scholar
  75. 75.
    Di H, Boly M, Weng X, Ledoux D, Laureys S (2008) Neuroimaging activation studies in the vegetative state: predictors of recovery? Clin Med 8(5):502–507PubMedGoogle Scholar
  76. 76.
    Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD (2006) Detecting awareness in the vegetative state. Science 313(5792):1402CrossRefPubMedGoogle Scholar
  77. 77.
    Raichle ME (2006) Neuroscience. The brain's dark energy. Science 314(5803):1249–1250CrossRefPubMedGoogle Scholar
  78. 78.
    Boly M, Phillips C, Tshibanda L, Vanhaudenhuyse A, Schabus M, Dang-Vu TT, Moonen G, Maquet P, Laureys S (2008) Intrinsic brain activity in altered states of consciousness. How conscious is the default mode of brain function? Ann N Y Acad Sci 1129:119–129CrossRefPubMedGoogle Scholar
  79. 79.
    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682CrossRefPubMedGoogle Scholar
  80. 80.
    Boly M, Phillips C, Balteau E, Schnakers C, Degueldre C, Moonen G, Luxen A, Peigneux P, Faymonville ME, Maquet P, Laureys S (2008) Consciousness and cerebral baseline activity fluctuations. Hum Brain Mapp 29(7):868–874CrossRefPubMedGoogle Scholar
  81. 81.
    Eickhoff SB, Dafotakis M, Grefkes C, Stocker T, Shah NJ, Schnitzler A, Zilles K, Siebler M (2008) fMRI reveals cognitive and emotional processing in a long-term comatose patient. Exp Neurol 214(2):240–246CrossRefPubMedGoogle Scholar
  82. 82.
    Zhu J, Wu X, Gao L, Mao Y, Zhong P, Tang W, Zhou L (2009) Cortical activity after emotional visual stimulation in minimally conscious state patients. J Neurotrauma 26(5):677–688CrossRefPubMedGoogle Scholar
  83. 83.
    Boly M, Tshibanda L, Vanhaudenhuyse A, Noirhomme Q, Schnakers C, Ledoux D, Boveroux P, Garweg C, Lambermont B, Phillips C, Luxen A, Moonen G, Bassetti C, Maquet P, Laureys S (2009) Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp 30(8):2393–2400CrossRefPubMedGoogle Scholar
  84. 84.
    Cauda F, Micon BM, Sacco K, Duca S, D'Agata F, Geminiani G, Canavero S (2009) Disrupted intrinsic functional connectivity in the vegetative state. J Neurol Neurosurg Psychiatry 80(4):429–431CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Luaba Tshibanda
    • 1
    • 2
  • Audrey Vanhaudenhuyse
    • 1
  • Mélanie Boly
    • 1
    • 2
    • 3
  • Andrea Soddu
    • 1
  • Marie-Aurelie Bruno
    • 1
  • Gustave Moonen
    • 3
  • Steven Laureys
    • 1
    • 2
    • 3
  • Quentin Noirhomme
    • 1
  1. 1.Coma Science Group, Cyclotron Research CenterUniversity and University Hospital of LiègeLiègeBelgium
  2. 2.Department of NeuroradiologyUniversity Hospital of LiègeLiègeBelgium
  3. 3.Department of NeurologyUniversity Hospital of LiègeLiègeBelgium

Personalised recommendations