Skip to main content
Log in

Temporal dependence of in vivo USPIO-enhanced MRI signal changes in human carotid atheromatous plaques

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced MRI has been shown to be a useful modality to image activated macrophages in vivo, which are principally responsible for plaque inflammation. This study determined the optimum imaging time-window to detect maximal signal change post-USPIO infusion using T1-weighted (T1w), T2*-weighted (T2*w) and quantitative T2* (qT2*) imaging.

Methods

Six patients with an asymptomatic carotid stenosis underwent high resolution T1w, T2*w and qT2* MR imaging of their carotid arteries at 1.5 T. Imaging was performed before and at 24, 36, 48, 72 and 96 h after USPIO (Sinerem™, Guerbet, France) infusion. Each slice showing atherosclerotic plaque was manually segmented into quadrants and signal changes in each quadrant were fitted to an exponential power function to model the optimum time for post-infusion imaging.

Results

The power function determining the mean time to convergence for all patients was 46, 41 and 39 h for the T1w, T2*w and qT2* sequences, respectively. When modelling each patient individually, 90% of the maximum signal intensity change was observed at 36 h for three, four and six patients on T1w, T2*w and qT2*, respectively. The rates of signal change decrease after this period but signal change was still evident up to 96 h.

Conclusion

This study showed that a suitable imaging window for T1w, T2*w and qT2* signal changes post-USPIO infusion was between 36 and 48 h. Logistically, this would be convenient in bringing patients back for one post-contrast MRI, but validation is required in a larger cohort of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Herborn CU, Vogt FM, Lauenstein TC, Dirsch O, Corot C, Robert P, Ruehm SG (2006) Magnetic resonance imaging of experimental atherosclerotic plaque: comparison of two ultrasmall superparamagnetic particles of iron oxide. J Magn Reson Imaging 24:388–393. doi:10.1002/jmri.20649

    Article  PubMed  Google Scholar 

  2. Hyafil F, Laissy JP, Mazighi M, Tchetche D, Louedec L, Adle-Biassette H, Chillon S, Henin D, Jacob MP, Letourneur D, Feldman LJ (2006) Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta: relationship between signal loss and macrophage infiltration. Arterioscler Thromb Vasc Biol 26:176–181. doi:10.1161/01.ATV.0000194098.82677.57

    Article  PubMed  CAS  Google Scholar 

  3. Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103:415–422

    PubMed  CAS  Google Scholar 

  4. Yancy AD, Olzinski AR, Hu TC, Lenhard SC, Aravindhan K, Gruver SM, Jacobs PM, Willette RN, Jucker BM (2005) Differential uptake of ferumoxtran-10 and ferumoxytol, ultrasmall superparamagnetic iron oxide contrast agents in rabbit: critical determinants of atherosclerotic plaque labeling. J Magn Reson Imaging 21:432–442. doi:10.1002/jmri.20283

    Article  PubMed  Google Scholar 

  5. Kooi ME, Cappendijk VC, Cleutjens KB, Kessels AG, Kitslaar PJ, Borgers M, Frederik PM, Daemen MJ, van Engelshoven JM (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458. doi:10.1161/01.CIR.0000068315.98705.CC

    Article  PubMed  CAS  Google Scholar 

  6. Trivedi RA, Mallawarachi C, U-King-Im JM, Graves MJ, Horsley J, Goddard MJ, Brown A, Wang L, Kirkpatrick PJ, Brown J, Gillard JH (2006) Identifying inflamed carotid plaques using in vivo USPIO-Enhanced MR imaging to label plaque macrophages. Arterioscler Thromb Vasc Biol 26:1601–1606. doi:10.1161/01.ATV.0000222920.59760.df

    Article  PubMed  CAS  Google Scholar 

  7. Tang T, Howarth SP, Miller SR, Trivedi R, Graves MJ, U-kIng-Im JM, Li ZY, Brown AP, Kirkpatrick PJ, Gaunt ME, Gillard JH (2006) Assessment of inflammatory burden contralateral to the symptomatic carotid stenosis using high-resolution ultrasmall, superparamagnetic iron oxide-enhanced MRI. Stroke 37:2266–2270. doi:10.1161/01.STR.0000236063.47539.99

    Article  PubMed  CAS  Google Scholar 

  8. Trivedi RA, U-King-Im JM, Graves MJ, Kirkpatrick PJ, Gillard JH (2004) Noninvasive imaging of carotid plaque inflammation. Neurology 63:187–188

    PubMed  CAS  Google Scholar 

  9. Trivedi RA, UK-I JM, Graves MJ, Cross JJ, Horsley J, Goddard MJ, Skepper JN, Quartey G, Warburton E, Joubert I, Wang L, Kirkpatrick PJ, Brown J, Gillard JH (2004) In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke 35:1631–1635. doi:10.1161/01.STR.0000131268.50418.b7

    Article  PubMed  Google Scholar 

  10. Trivedi RA, UK-I JM, Graves MJ, Kirkpatrick PJ, Gillard JH (2004) Noninvasive imaging of carotid plaque inflammation. Neurology 63:187–188

    PubMed  CAS  Google Scholar 

  11. Howarth SPS, Tang TY, Li ZY, Miller SR, Weerakkody RA, Graves MJ U- King-Im, J. M., Walsh, S. R., Boyle, J. R., Gaunt, M. E., Kirkpatrick, P. J., Gillard, J. H. (2009) Utility of USPIO-enhanced MR imaging to identify inflammation and the fibrous cap: a comparison of symptomatic and asymptomatic individuals. Eur J Radiol (in press).

  12. Tang TY (2007) A 12-week, randomised, double-blind study evaluating the effects of low-dose (10 mg) and high-dose (80 mg) atorvastatin on macrophage activity and carotid plaque inflammation as determined by ultra small super-paramagnetic iron oxide (uspio) enhanced carotid magnetic resonance imaging (mri). http://wwwcontrolled-trialscom/ISRCTN64894118.

  13. McLachlan SJ, Morris MR, Lucas MA, Fisco RA, Eakins MN, Fowler DR, Scheetz RB, Olukotun AY (1994) Phase I clinical evaluation of a new iron oxide MR contrast agent. J Magn Reson Imaging 4:301–307. doi:10.1002/jmri.1880040313

    Article  PubMed  CAS  Google Scholar 

  14. Hatsukami TS, Ross R, Polissar NL, Yuan C (2000) Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation 102:959–964

    PubMed  CAS  Google Scholar 

  15. Tang TY, Howarth SP, Miller SR, Graves MJ, Li JMUK-I, Walsh ZY Sr, Hayes PD, Varty K, Gillard JH (2008) Comparison of the inflammatory burden of truly asymptomatic carotid atheroma with atherosclerotic plaques in patients with asymptomatic carotid stenosis undergoing coronary artery bypass grafting: an ultrasmall superparamagnetic iron oxide enhanced magnetic resonance study. Eur J Vasc Endovasc Surg 35:392–398. doi:10.1016/j.ejvs.2007.10.019

    Article  PubMed  CAS  Google Scholar 

  16. Press WH (2002) Numerical recipes in C++ : the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  17. Carneiro AAO, Vilela GR, de Araujo DB, Baffa O (2005) MRI relaxometry: methods and applications. Braz J Phys 36:9–15

    Google Scholar 

  18. Weiss M (1983) Use of gamma distributed residence times in pharmacokinetics. Eur J Clin Pharmacol 25:695–702. doi:10.1007/BF00542361

    Article  PubMed  CAS  Google Scholar 

  19. Wise ME (1985) Negative power functions of time in pharmacokinetics and their implications. J Pharmacokinet Biopharm 13:309–346. doi:10.1007/BF01065658

    Article  PubMed  CAS  Google Scholar 

  20. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695. doi:10.1056/NEJMra043430

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the MR radiographers, Ilse Joubert, Ruth Beavon and Elzare Vanrooyen for their hard work and Tim Baynes, Specialist Research Nurse, for his dedication and support. This work was supported by a National Institute of Health Biomedical Research Centre grant.

Conflict of interest statement

SRM is an employee of GlaxoSmithKline (GSK). JHG is a consultant to GSK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Gillard.

Additional information

Sources of funding: GlaxoSmithKline and The Stroke Association

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, T.Y., Patterson, A.J., Miller, S.R. et al. Temporal dependence of in vivo USPIO-enhanced MRI signal changes in human carotid atheromatous plaques. Neuroradiology 51, 457–465 (2009). https://doi.org/10.1007/s00234-009-0523-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-009-0523-x

Keywords

Navigation