Skip to main content

Advertisement

Log in

Influence of obstetric complication severity on brain morphology in schizophrenia: an MR study

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The purpose of this study was to determine if a causal relationship exists between obstetric complications (OCs) severity and linear magnetic resonance (MR) measurements of brain atrophy in patients with schizophrenia.

Materials and methods

Linear measurements of ventricular enlargement (bifrontal span, Evans ratio, and bicaudate ratio) and hippocampal atrophy (interuncal distance) were completed on MR images obtained in 47 patients with schizophrenia. Regression analysis was used to look at association with OCs severity, assessed by the “Midwife protocol” of Parnas and colleagues. The relationship between MR measurements and phenomenologic variables such as age at onset, illness duration, and exposure to antipsychotic medications was explored. The relationship between MR measurements, OCs severity, and symptom presentation was also investigated.

Results

OCs severity was significantly associated with MR measurements of ventricular enlargement (bifrontal span, Evans ratio). As the severity of OCs increased, bifrontal span and Evans ratio increased. This effect was independent of age at onset, illness duration, or even antipsychotic treatment. Interestingly, bifrontal span, Evans ratio, and OCs severity score all showed a significant positive correlation with hallucinatory symptomatology.

Conclusion

Although confirmatory studies are needed, our findings would support the idea that environmental factors, in this case severe OCs, might partly contribute to ventricular abnormalities in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thomas HV, Dalman C, David AS et al (2001) Obstetric complications and risk of schizophrenia. Br J Psychiatry 179:409–414 doi:10.1192/bjp.179.5.409

    Article  PubMed  CAS  Google Scholar 

  2. Bersani G, Taddei I, Manuali G et al (2003) Severity of obstetric complications and risk of adult schizophrenia in male patients: a case-control study. J Matern Fetal Neonatal Med 14:1–4 doi:10.1080/713606512

    Article  Google Scholar 

  3. Bersani G, Manuali G, Ramieri L et al (2007) The potential role of high or low birth weight as risk factor for adult schizophrenia. J Perinat Med 35:159–161 doi:10.1515/JPM.2007.021

    Article  PubMed  Google Scholar 

  4. Ballon JS, Dean KA, Cadenhead KS (2008) Obstetric complications in people at risk for developing schizophrenia. Schizophr Res 98:307–311 doi:10.1016/j.schres.2007.05.011

    Article  PubMed  Google Scholar 

  5. Johnston EC, Crow TJ, Frith CD et al (1976) Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet 2:924–926 doi:10.1016/S0140-6736(76)90890-4

    Article  Google Scholar 

  6. Weinberger DR, Torrey EF, Neophytides AN et al (1979) Structural brain abnormalities in the cerebral cortex of chronic schizophrenic patients. Arch Gen Psychiatry 36:935–939

    PubMed  CAS  Google Scholar 

  7. Kelsoe JR, Cadet JL, Pickar D, Weinberger DR (1988) Quantitative neuroanatomy in schizophrenia. A controlled magnetic resonance imaging study. Arch Gen Psychiatry 45:533–541

    PubMed  Google Scholar 

  8. Puri BK, Saeed N, Richardson AJ et al (2005) Schizophrenia syndromes associated with changes in ventricle-to-brain ratios: a serial high-resolution three-dimensional magnetic resonance imaging study in first-episode schizophrenia patients using subvoxel registration and semiautomated quantification. Int J Clin Pract 59:399–402 doi:10.1111/j.1368-5031.2005.00501.x

    Article  PubMed  CAS  Google Scholar 

  9. Bersani G, Quartini A, Piperopoulos O et al (2005) Brain abnormalities in schizophrenia. A qualitative comparative study of schizophrenic patients and control individuals assessed by magnetic resonance imaging. J Neuroradiol 33:152–157 doi:10.1016/S0150-9861(06)77252-2

    Google Scholar 

  10. Narr KL, Bilder RM, Woods RP (2006) Regional specificity of cerebrospinal fluid abnormalities in first episode schizophrenia. Psychiatry Res 146:21–33 doi:10.1016/j.pscychresns.2005.10.005

    Article  PubMed  Google Scholar 

  11. Cannon TD, Van Erp TGM, Huttunen M et al (1998) Regional gray matter, white matter and cerebrospinal fluid distributions in schizophrenic patients, their siblings and controls. Arch Gen Psychiatry 55:1084–1091 doi:10.1001/archpsyc.55.12.1084

    Article  PubMed  CAS  Google Scholar 

  12. Yamasue H, Iwanami A, Hirayasu Y et al (2004) Localized volume reduction in prefrontal, temporolimbic, and paralimbic regions in schizophrenia: an MRI parcellation study. Psychiatry Res 131:195–207 doi:10.1016/j.pscychresns.2004.05.004

    Article  PubMed  Google Scholar 

  13. McDonald C, Bullmore E, Sham P et al (2005) Regional volume deviations of brain structure in schizophrenia and psychotic bipolar disorder: computational morphometry study. Br J Psychiatry 186:369–377 doi:10.1192/bjp.186.5.369

    Article  PubMed  Google Scholar 

  14. Nelson MD, Saykin AJ, Flashman LA et al (1998) Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Arch Gen Psychiatry 55:433–440 doi:10.1001/archpsyc.55.5.433

    Article  PubMed  CAS  Google Scholar 

  15. Stefanis N, Frangou S, Yakeley J et al (1999) Hippocampal volume reduction in schizophrenia: effect of genetic risk and pregnancy and birth complications. Biol Psychiatry 46:697–702 doi:10.1016/S0006-3223(99)00089-X

    Article  PubMed  CAS  Google Scholar 

  16. McNeil TF, Cantor-Graae EC (2000) Minor physical anomalies and obstetric complications in schizophrenia. Aust N Z J Psychiatry 34:S65–S73, Suppl. doi:10.1046/j.1440-1614.2000.00784.x

    Article  PubMed  Google Scholar 

  17. McNeil TF, Cantor-Graae EC, Weinberger DR (2000) Relationship of obstetric complications and differences in size of brain structures in monozygotic twin pairs discordant for schizophrenia. Am J Psychiatry 157:203–212 doi:10.1176/appi.ajp.157.2.203

    Article  PubMed  CAS  Google Scholar 

  18. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders IV edition (DSM-IV). American Psychiatric Association, Washington DC

    Google Scholar 

  19. Andreasen NC (1983) The Scale for the Assessment of Negative Symptoms (SANS). The University of Iowa, Iowa City

    Google Scholar 

  20. Andreasen NC (1984) The Scale for the Assessment of Positive Symptoms (SAPS). The University of Iowa, Iowa City

    Google Scholar 

  21. Dazzan P, Morgan KD, Orr KG et al (2005) Different effects of typical and atypical antipsychotics on grey matter in first episode psychosis: the ǼSOP study. Neuropsychopharmacology 30:765–774

    PubMed  CAS  Google Scholar 

  22. Miller DD, Andreasen NC, O’Leary DS et al (2001) Comparison of the effect of risperidone and haloperidol on regional cerebral blood flow in schizophrenia. Biol Psychiatry 49:704–715 doi:10.1016/S0006-3223(00)01001-5

    Article  PubMed  CAS  Google Scholar 

  23. Pariante CM, Dazzan P, Danese A et al (2005) Increased pituitary volume in antipsychotic-free and antipsychotic-treated patients of the Ǽsop first-onset psychosis study. Neuropsychopharmacology 30:1923–1931 doi:10.1038/sj.npp.1300766

    Article  PubMed  CAS  Google Scholar 

  24. Tamagaki C, Sedvall GC, Jonsson EG et al (2005) Altered white matter/gray matter proportions in the striatum of patients with schizophrenia: a volumetric MRI study. Am J Psychiatry 162:2315–2321 doi:10.1176/appi.ajp.162.12.2315

    Article  PubMed  Google Scholar 

  25. Bazire S (2003) Psychotropic drug directory. Quay Books, Salisbury

    Google Scholar 

  26. Parnas J, Schulsinger F, Teasdale TW et al (1982) Perinatal complications and clinical outcome within the schizophrenia spectrum. Br J Psychiatry 140:416–420 doi:10.1192/bjp.140.4.416

    Article  PubMed  CAS  Google Scholar 

  27. Turner B, Ramli N, Blumhardt LD et al (2001) Ventricular enlargement in multiple sclerosis: a comparison of three-dimensional and linear MRI estimates. Neuroradiology 43:608–614 doi:10.1007/s002340000457

    Article  PubMed  CAS  Google Scholar 

  28. Bermel RA, Bakshi R, Tjoa C et al (2002) Bicaudate ratio as a magnetic resonance imaging marker of brain atrophy in multiple sclerosis. Arch Neurol 59:275–280 doi:10.1001/archneur.59.2.275

    Article  PubMed  Google Scholar 

  29. Teichmann M, Dupoux E, Kouider S et al (2005) The role of the striatum in rule application: the model of Huntington’s disease at early stages. Brain 128:1155–1168 doi:10.1093/brain/awh472

    Article  PubMed  Google Scholar 

  30. Frisoni GB, Geroldi C, Beltramello A et al (2002) Radial width of the temporal horn: a sensitive measure in Alzheimer disease. AJNR Am J Neuroradiol 23:35–47

    PubMed  Google Scholar 

  31. Gainotti G, Acciarri A, Bizzarro A et al (2004) The role of brain infarcts and hippocampal atrophy in subcortical ischaemic vascular dementia. Neurol Sci 25:192–197 doi:10.1007/s10072-004-0321-5

    Article  PubMed  CAS  Google Scholar 

  32. Saka E, Dogan EA, Topcuoglu MA et al (2007) Linear measures of temporal lobe atrophy on brain magnetic resonance imaging (MRI) but not visual rating of white matter changes can help discrimination of mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Arch Gerontol Geriatr 44:141–151 doi:10.1016/j.archger.2006.04.006

    Article  PubMed  Google Scholar 

  33. Scheltens P, Launer LJ, Barkhof F et al (1995) Visual assessment of temporal lobe atrophy on MRI: Interobserver reliability. J Neurol 242:557–560 doi:10.1007/BF00868807

    Article  PubMed  CAS  Google Scholar 

  34. Whalley HC, Wardlaw JM (2001) Accuracy and reproducibility of simple cross-sectional linear and area measurements of brain structures and their comparison with volume measurements. Neuroradiology 43:263–271 doi:10.1007/s002340000437

    Article  PubMed  CAS  Google Scholar 

  35. McDonald C, Grech A, Toulopoulou T et al (2002) Brain volumes in familial and non-familial schizophrenic probands and their unaffected relatives. Am J Med Genet 114:616–625 doi:10.1002/ajmg.10604

    Article  PubMed  Google Scholar 

  36. Doraiswamy PM, Patterson L, Na C et al (1994) Bicaudate index on magnetic resonance imaging: effects of normal aging. J Geriatr Psychiatry Neurol 7:13–17

    PubMed  CAS  Google Scholar 

  37. Lang DJ, Kopala LC, Vandorpe RA et al (2004) Reduced basal ganglia volumes after switching to olanzapine in chronically treated patients with schizophrenia. Am J Psychiatry 161:1829–1836 doi:10.1176/appi.ajp.161.10.1829

    Article  PubMed  Google Scholar 

  38. Wright IC, Rabe-Hesketh S, Woodruff PWR et al (2000) Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 157:16–23

    PubMed  CAS  Google Scholar 

  39. O’Callaghan E, Larkin C, Waddington JL (1990) Obstetric complications in schizophrenia and the validity of maternal recall. Psychol Med 20:89–94

    Article  PubMed  Google Scholar 

  40. Cantor-Graae E, Cardenal S, Ismail B et al (1998) Recall of obstetric events by mothers of schizophrenic patients. Psychol Med 28:1239–1243 doi:10.1017/S0033291798006953

    Article  PubMed  CAS  Google Scholar 

  41. Lewis SW, Owen MJ, Murray RM (1989) Obstetric complications and schizophrenia: methodology and mechanisms. In: Schulz SC, Tamminga CA (eds) Schizophrenia: scientific progress. Oxford University Press, Oxford, pp 56–68

    Google Scholar 

  42. Cannon TD, Van Erp TG, Rosso IM et al (2002) Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 59:35–41 doi:10.1001/archpsyc.59.1.35

    Article  PubMed  Google Scholar 

  43. Dalman C, Thomas HV, Davis AS et al (2001) Signs of asphyxia at birth and risk of schizophrenia. Population-based-control study. Br J Psychiatry 179:403–408 doi:10.1192/bjp.179.5.403

    Article  PubMed  CAS  Google Scholar 

  44. Cannon TD, Mednick SA, Parnas S et al (1993) Developmental brain abnormalities in the offspring of schizophrenic mothers, I: contribution of genetic and perinatal factors. Arch Gen Psychiatry 50:551–564

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bersani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bersani, G., Quartini, A., Manuali, G. et al. Influence of obstetric complication severity on brain morphology in schizophrenia: an MR study. Neuroradiology 51, 363–371 (2009). https://doi.org/10.1007/s00234-009-0501-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-009-0501-3

Keywords

Navigation