Skip to main content

Advertisement

Log in

Is it possible to define salvageable ischemic penumbra using semiquantitative rCBF levels derived from MR perfusion-weighted imaging?

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The purpose of this study was to test if magnetic resonance (MR) perfusion-weighted imaging (PWI) can reliably characterize the ischemic penumbra.

Materials and methods

Sixteen patients with nonlacunar ischemic stroke who were scanned within 24 h after onset of symptoms were selected for the study. In previous studies, the level of regional cerebral blood flow (rCBF) in the normal white matter of the contralateral hemisphere was defined as 22 ml/100 g/min. We used this level as a standard of reference. We hypothesized that rCBF below this level would be amenable to infarct. The lesion-to-white matter ratios of rCBF were measured in the regions of ischemic core (“Core”), infarcted penumbra (“Growth”), salvaged penumbra (“Reversed”), and contralateral normal cortex (“Normal”).

Results

The rCBF of “Growth” and “Reversed” areas showed substantial overlap, which hampered the delineation of areas that would become infarcted.

Conclusion

The semiquantitative rCBF derived from MR PWI may not accurately characterize the ischemic penumbra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jones TH, Morawetz RB, Crowell RM et al (1981) Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg 54:773–782

    PubMed  CAS  Google Scholar 

  2. Powers WJ, Grubb RL Jr, Raichle ME (1984) Physiological responses to focal cerebral ischemia in humans. Ann Neurol 16:546–552

    Article  PubMed  CAS  Google Scholar 

  3. Powers WJ, Grubb RL Jr, Darriet D et al (1985) Cerebral blood flow and cerebral metabolic rate of oxygen requirements for cerebral function and viability in humans. J Cereb Blood Flow Metab 5:600–608

    PubMed  CAS  Google Scholar 

  4. Hakim AM, Evans AC, Berger L et al (1989) The effect of nimodipine on the evolution of human cerebral infarction studied by PET. J Cereb Blood Flow Metab 9:523–534

    PubMed  CAS  Google Scholar 

  5. Marchal G, Beaudouin V, Rioux P et al (1996) Prolonged persistence of substantial volumes of potentially viable brain tissue after stroke: a correlative PET-CT study with voxel-based data analysis. Stroke 27:599–606

    PubMed  CAS  Google Scholar 

  6. Furlan M, Marchal G, Viader F et al (1996) Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol 40:216–226

    Article  PubMed  CAS  Google Scholar 

  7. Kaufmann AM, Firlik AD, Fukui MB et al (1999) Ischemic core and penumbra in human stroke. Stroke 30:93–99

    PubMed  CAS  Google Scholar 

  8. Yamaguchi T, Kanno I, Uemura K et al (1986) Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke 17:1220–1228

    PubMed  CAS  Google Scholar 

  9. Leenders KL, Perani D, Lammertsma AA et al (1990) Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113:27–47

    Article  PubMed  Google Scholar 

  10. Pantano P, Baron JC, Lebrun-Grandié P et al (1984) Regional cerebral blood flow and oxygen consumption in human aging. Stroke 15:635–641

    PubMed  CAS  Google Scholar 

  11. Parsons MW, Yang Q, Barber PA et al (2001) Perfusion magnetic resonance imaging maps in hyperacute stroke: relative cerebral blood flow most accurately identifies tissue destined to infarct. Stroke 32:1581–1587

    PubMed  CAS  Google Scholar 

  12. Koga M, Reutens DC, Wright P et al (2005) The existence and evolution of diffusion-perfusion mismatched tissue in white and gray matter after acute stroke. Stroke 36:2132–2137

    Article  PubMed  Google Scholar 

  13. Loh PS, Butcher KS, Parsons MW et al (2005) Apparent diffusion coefficient thresholds do not predict the response to acute stroke thrombolysis. Stroke 36:2626–2631

    Article  PubMed  Google Scholar 

  14. Bristow MS, Simon JE, Brown RA et al (2005) MR perfusion and diffusion in acute ischemic stroke: human gray and white matter have different thresholds for infarction. J Cereb Blood Flow Metab 25:1280–1287

    Article  PubMed  Google Scholar 

  15. Schaefer PW, Ozsunar Y, He J et al (2003) Assessing tissue viability with MR diffusion and perfusion imaging. AJNR Am J Neuroradiol 24:436–443

    PubMed  Google Scholar 

  16. Smith AM, Grandin CB, Duprez T et al (2000) Whole brain quantitative CBF, CBV, and MTT measurements using MRI bolus tracking: implementation and application to data acquired from hyperacute stroke patients. J Magn Reson Imaging 12:400–410

    Article  PubMed  CAS  Google Scholar 

  17. Arakawa S, Wright PM, Koga M et al (2006) Ischemic thresholds for gray and white matter: a diffusion and perfusion magnetic resonance study. Stroke 37:1211–1216

    Article  PubMed  Google Scholar 

  18. Simon JE, Bristow MS, Lu H et al (2005) A novel method to derive separate gray and white matter cerebral blood flow measures from MR imaging of acute ischemic stroke patients. J Cereb Blood Flow Metab 25:1236–1243

    Article  PubMed  Google Scholar 

  19. Butcher KS, Parsons M, MacGregor L et al (2005) Refining the perfusion-diffusion mismatch hypothesis. Stroke 36:1153–1159

    Article  PubMed  CAS  Google Scholar 

  20. Rivers CS, Wardlaw JM, Armitage PA et al (2006) Do acute diffusion- and perfusion-weighted MRI lesions identify final infarct volume in ischemic stroke? Stroke 37:98–104

    Article  PubMed  CAS  Google Scholar 

  21. Hacke W, Albers G, Al-Rawi Y et al (2005) The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 36:66–73

    Article  PubMed  CAS  Google Scholar 

  22. Waaijer A, van Leeuwen MS, van Osch MJ et al (2007) Changes in cerebral perfusion after revascularization of symptomatic carotid artery stenosis: CT measurement. Radiology 245:541–548

    Article  PubMed  Google Scholar 

  23. Shimosegawa E, Hatazawa J, Inugami A et al (1994) Cerebral infarction within six hours of onset: prediction of completed infarction with technetium-99 m-HMPAO SPECT. J Nucl Med 35:1097–1103

    PubMed  CAS  Google Scholar 

  24. Ueda T, Sakaki S, Yuh WT et al (1999) Outcome in acute stroke with successful intra-arterial thrombolysis and predictive value of initial single-photon emission-computed tomography. J Cereb Blood Flow Metab 19:99–108

    Article  PubMed  CAS  Google Scholar 

  25. Ostergaard L, Chesler DA, Weisskoff RM et al (1999) Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data. J Cereb Blood Flow Metab 19:690–699

    Article  PubMed  CAS  Google Scholar 

  26. Yamada K, Wu O, Gonzalez RG et al (2002) Magnetic resonance perfusion-weighted imaging of acute cerebral infarction: effect of the calculation methods and underlying vasculopathy. Stroke 33:87–94

    Article  PubMed  Google Scholar 

  27. Mukherjee P, Kang HC, Videen TO et al (2003) Measurement of cerebral blood flow in chronic carotid occlusive disease: comparison of dynamic susceptibility contrast perfusion MR imaging with positron emission tomography. AJNR Am J Neuroradiol 24:862–871

    PubMed  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akazawa, K., Yamada, K., Matsushima, S. et al. Is it possible to define salvageable ischemic penumbra using semiquantitative rCBF levels derived from MR perfusion-weighted imaging?. Neuroradiology 50, 939–945 (2008). https://doi.org/10.1007/s00234-008-0427-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-008-0427-1

Keywords

Navigation