Abstract
Introduction
To determine whether diffusion-weighted magnetic resonance (MR) imaging findings combined with initial clinical factors indicate the depth of shearing lesions in the brain structure and therefore relate to coma duration in diffuse axonal injury (DAI).
Methods
A total of 74 adult patients (48 male and 26 female) with DAI were examined with conventional MR imaging and diffusion-weighted MR imaging between 2 hours and 20 days after injury. Apparent diffusion coefficient (ADC) maps were obtained and the mean ADC values of each region of interest (ROI) were measured using MRI console software. The involvement of the brainstem, deep gray matter, and corpus callosum was determined for each sequence separately as well as for the combination of all sequences. The correlations between MR imaging findings indicating the presence of apparent brain injury combined with initial clinical factors were determined.
Results
Clinical characteristics, such as initial score on the Glasgow coma scale (GCS), age and number of all lesions, and ADC scores were predictive of the duration of coma.
Conclusion
It was possible to predict post-traumatic coma duration in DAI from cerebral MR imaging findings combined with clinical prognostic factors in the acute to subacute stage after head injury. Age, ADC scores, GCS score and number of lesions were highly significant in predicting coma duration. The technique presented here might provide a tool for in vivo detection of DAI to allow the prediction of the coma duration during the early stages in patients with traumatic brain injury.
This is a preview of subscription content, access via your institution.




References
Adams JH, Doyle D, Ford I et al (1989) Diffuse axonal injury in head injury: definition, diagnosis, and grading. Histopathology 15:49–59
Blumbergs PC, Jones NR, North JB (1989) Diffuse axonal injury in head trauma. J Neurol Neurosurg Psychiatry 52:838–841
Levin HS, Mendelsohn D, Lilly MA et al (1997) Magnetic resonance imaging in relation to functional outcome of pediatric closed head injury: a test of the Ommaya-Gennarelli model. Neurosurgery 40:432–440
Grados MA, Slomine BS, Gerring JP et al (2001) Depth of lesion model in children and adolescents with moderate to severe traumatic brain injury: use of SPGR MRI to predict severity and outcome. J Neurol Neurosurg Psychiatry 70:350–358
Gentry LR, Godersky JC, Thompson BH (1989) Traumatic brain stem injury: MR imaging. Radiology 171:177–187
Liu AY, Maldjian JA, Bagley LJ et al (1999) Traumatic brain injury: diffusion-weighted MR imaging findings. AJNR Am J Neuroradiol 20:1636–1641
Smith DH, Meaney DF, Lenkinski RE et al (1995) New magnetic resonance imaging techniques for the evaluation of traumatic brain injury. J Neurotrauma 12:573–577
Hanstock CC, Faden AI, Bendall MR et al (1994) Diffusion weighted imaging differentiates ischemic tissue from traumatized tissue. Stroke 25:843–848
Le Bihan DJ (1998) Differentiation of benign versus pathologic compression fractures with diffusion-weighted MR imaging: a closer step toward the ‘holy grail’ of tissue characterization. Radiology 207:305–307
Szafer A, Zhong J, Anderson AW et al (1995) Diffusion-weighted imaging in tissues: theoretical models. NMR Biomed 8:289–296
Lang P, Johnston JO, Arenal-Romero F et al (1998) Advances in MR imaging of pediatric musculoskeletal neoplasms. Magn Reson Imaging Clin N Am 6:579–604
Szafer A, Zhong J, Gore JC (1995) Theoretical model for water diffusion in tissues. Magn Reson Med 33:697–712
Eis M, Els T, Hoehn-Berlage M (1995) High resolution quantitative relaxation and diffusion MRI of three different experimental brain tumors in rat. Magn Reson Med 34:835–844
Le Bihan D, Breton E, Lallemand D et al (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505
Huisman TA, Sorensen AG, Hergan K et al (2003) Diffusion weighted imaging for the evaluation of diffuse axonal injury in closed head injury. J Comput Assist Tomogr 27:5–11
Ito J, Marmarou A, Barzo P et al (1996) Characterization of edema by diffusion-weighted imaging in experimental traumatic brain injury. J Neurosurg 84:97–103
Barzo P, Marmarou A, Fatouros P et al (1997) Contribution of vasogenic and cellular edema to traumatic brain swelling measured by diffusion-weighted imaging. J Neurosurg 87:900–907
Huisman TA, Schwamm LH, Schaefer PW et al (2004) Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR Am J Neuroradiol 3:370–376
Gentry LR, Godersky JC, Thompson B et al (1988) Prospective comparative study of intermediate field MR and CT in the evaluation of closed head trauma. AJR Am J Roentgenol 150:673–682
Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness. A practical scale. Lancet 2:81–84
Lai SM, Duncan PW (1999) Evaluation of the American Heart Association Stroke Outcome Classification. Stroke 30:1840–1843
Gentry LR (1994) Imaging of closed head injury. Radiology 191:1–17
Yanagawa Y, Tsushima Y, Tokumaru A et al (2000) A quantitative analysis of head injury using T2*-weighted gradient-echo imaging. J Trauma 49:272–277
Srivastava MS, Carter EM (1983) An introduction to applied multivariate statistics. Elsevier Science, New York, pp 134–166
Chen B, Li K, Lin K (2003) Medical reference ranges determined with percentile of multiple indicatrixes. Med J West China 1:185–186
Cecil K, Hills E, Sandel M et al (1998) Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. J Neurosurg 88:795–801
Filippi M, Rocca M, Martino G et al (1998) Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43:809–814
Brockstedt S, Thomsen C, Wirestam R et al (1998) Quantitative diffusion coefficient maps using fast spin-echo MRI. Magn Reson Imaging 16:877–886
Pierpaoli C, Jezzard P, Basser PJ et al (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648
Gideon P, Thomsen C, Henriksen O (1994) Increased self-diffusion of brain water in normal aging. J Magn Reson Imaging 4:185–188
Helenius J, Soinne L, Perkio J et al (2002) Diffusion-weighted MR imaging in normal human brains in various age groups. AJNR Am J Neuroradiol 23:194–199
Adams JH, Graham DI, Murray LS et al (1982) Diffuse axonal injury due to nonmissile head injury in humans: an analysis of 45 cases. Ann Neurol 12:557–563
Gennarelli TA, Thibault LE, Adams JH et al (1982) Diffuse axonal injury and traumatic coma in the primate. Ann Neurol 12:564–574
Kampfl A, Franz G, Aichner F et al (1998) The persistent vegetative state after closed head injury: clinical and magnetic resonance imaging findings in 42 patients. J Neurosurg 88:809–816
Hammoud DA, Wasserman BA (2002) Diffuse axonal injuries: pathophysiology and imaging. Neuroimaging Clin N Am 12:205–216
Schaefer PW, Huisman TA, Sorensen AG et al (2004) Diffusion-weighted MR imaging in closed head injury: high correlation with initial Glasgow coma scale score and score on modified Rankin scale at discharge. Radiology 233:58–66
Barzo P, Marmarou A, Fatouros P et al (1996) Magnetic resonance imaging-monitored acute blood-brain barrier changes in experimental traumatic brain injury. J Neurosurg 85:1113–1121
Ebisu T, Tanaka C, Umeda M et al (1997) Hemorrhagic and nonhemorrhagic stroke: diagnosis with diffusion-weighted and T2-weighted echo-planar MR imaging. Radiology 203:823–828
Paterakis K, Karantanas AH, Komnoa A et al (2000) Outcome of patients with diffuse axonal injury: the significance and prognostic value of MRI in the acute phase. J Trauma 49:1071–1075
The Brain Trauma Foundation, The American Association of Neurological Surgeons, The Joint Section on Neurotrauma and Critical Care (2000) Glasgow coma scale score. J Neurotrauma 17:563–572
The Brain Trauma Foundation, The American Association of Neurological Surgeons, The Joint Section on Neurotrauma and Critical Care (2000) Age. J Neurotrauma 17:573–582
Acknowledgements
The authors thank Professor B. Chen for his support in the statistical analysis of the data.
Conflict of interest statement
We declare that we have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zheng, W.B., Liu, G.R., Li, L.P. et al. Prediction of recovery from a post-traumatic coma state by diffusion-weighted imaging (DWI) in patients with diffuse axonal injury. Neuroradiology 49, 271–279 (2007). https://doi.org/10.1007/s00234-006-0187-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00234-006-0187-8
Keywords
- Diffuse axonal injury
- Magnetic resonance imaging
- Diffusion-weighted imaging
- Apparent diffusion coefficient