Skip to main content

Advertisement

Log in

Stereotactic radiosurgery for brain arteriovenous malformations: quantitative MR assessment of nidal response at 1 year and angiographic factors predicting early obliteration

  • Interventional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

We investigated the role of magnetic resonance angiography (MRA) in the early follow-up of patients after stereotactic radiosurgery (STRS) for cerebral arteriovenous malformations (AVMs) and determined the influence of individual morphological factors of AVMs in early response to treatment.

Methods

A group of 40 patients (41 AVMs) consented to a dedicated 1.5-T MR protocol 12 months after receiving STRS for a brain AVM. In addition to standard spin echo sequences, 3-D contrast-enhanced sliding interleaved Ky MRA (CE-SLINKY) and dynamic time-resolved subtraction angiography (MR-DSA) were performed. Nidal volumes were calculated using CE-SLINKY data in patients with a persisting arteriovenous shunt. Planning angiographic data was investigated in all 40 patients. The following AVM factors were used in the statistical analysis to determine their role in nidus obliteration: (1) maximum linear dimension, (2) nidal volume, (3) AVM location (4) nidal morphology, (5) venous drainage, (6) “high-flow angiographic change”, (7) prior embolization, and (8) dose reduction.

Results

Complete nidal obliteration was found in 9 patients, 26 showed greater than 50% nidal reduction and 6 had less than 50%. Two AVM factors, venous drainage and AVM location, were found to significantly correlate with rate of obliteration.

Conclusion

We successfully demonstrated the use of MRA to quantitatively assess the response of AVMs to STRS. Two AVM factors, venous drainage and AVM location were found to correlate with rate of obliteration prior to the application of the Bonferroni correction, but if this more rigorous statistical test was applied then none of the factors was found to be significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fleetwood IG, Steinberg GK (2002) Arteriovenous malformations. Lancet 359:863–873

    Article  PubMed  Google Scholar 

  2. Oppenheim C, Meder JF, Trystram D, Nataf F, Godon-Hardy S, Blustajn J, Merienne L, Schlienger M, Fredy D (1999) Radiosurgery of cerebral arteriovenous malformations: is an early angiogram needed? AJNR Am J Neuroradiol 20:475–481

    PubMed  CAS  Google Scholar 

  3. Yamamoto M, Jimbo M, Ide M, Lindquist C, Steiner L (1993) Postradiation volume changes in gamma unit-treated cerebral arteriovenous malformations. Surg Neurol 40:485–490

    Article  PubMed  CAS  Google Scholar 

  4. Kjellberg RN, Hanamura T, Davis KR, Lyons SL, Adams RD (1983) Bragg-peak proton-beam therapy for arteriovenous malformations of the brain. N Engl J Med 309:269–274

    Article  PubMed  CAS  Google Scholar 

  5. Aoki S, Nanbu A, Yoshikawa T, Hori M, Kumagai H, Araki T (1999) 2D in thick-slice MR digital subtraction angiography with one-second temporal resolution: Assessment of cerebrovascular disorders. Proceedings of the Annual Meeting of the American Society of Neuroradiology, 1999, Oak Brook, IL. American Society of Neuroradiology, p 122

  6. Griffiths PD, Hoggard N, Warren DJ, Wilkinson ID, Anderson B, Romanowski CA (2000) Brain arteriovenous malformations: assessment with dynamic MR digital subtraction angiography. AJNR Am J Neuroradiol 21:1892–1899

    PubMed  CAS  Google Scholar 

  7. Warren DJ, Hoggard N, Walton L, Radatz MW, Kemeny AA, Forster DM, Wilkinson ID, Griffiths PD (2001) Cerebral arteriovenous malformations: comparison of novel magnetic resonance angiographic techniques and conventional catheter angiography. Neurosurgery 48:973–982; discussion 982–983

    Article  PubMed  CAS  Google Scholar 

  8. Nagaraja S, Capener D, Coley SC, Lee KJ, Wilkinson ID, Kemeny AA, Griffiths PD (2005) Brain arteriovenous malformations: measurement of nidal volume using a combination of static and dynamic magnetic resonance angiography techniques. Neuroradiology 47:387–392

    Article  PubMed  CAS  Google Scholar 

  9. Mori H, Aoki S, Okubo T, Hayashi N, Masumoto T, Yoshikawa T, Tago M, Shin M, Kurita H, Abe O, Ohtomo K (2003) Two-dimensional thick-slice MR digital subtraction angiography in the assessment of small to medium-size intracranial arteriovenous malformations. Neuroradiology 45:27–33

    PubMed  CAS  Google Scholar 

  10. Liu K (1999) SLINKY: more understanding, optimisation and application for high resolution MRA. Proceedings of the Seventh Scientific Meeting of the International Society of Magnetic Resonance in Medicine, p 1908

    Google Scholar 

  11. Liu K, Lee DH, Rutt BK (1998) Systematic assessment and evaluation of sliding interleaved kY (SLINKY) acquisition for 3D MRA. J Magn Reson Imaging 8:912–923

    PubMed  CAS  Google Scholar 

  12. Liu K, Rutt BK (1998) Sliding interleaved kY (SLINKY) acquisition: a novel 3D MRA technique with suppressed slab boundary artifact. J Magn Reson Imaging 8:903–911

    PubMed  CAS  Google Scholar 

  13. Yamamoto M, Jimbo M, Kobayashi M, Toyoda C, Ide M, Tanaka N, Lindquist C, Steiner L (1992) Long-term results of radiosurgery for arteriovenous malformation: neurodiagnostic imaging and histological studies of angiographically confirmed nidus obliteration. Surg Neurol 37:219–230

    Article  PubMed  CAS  Google Scholar 

  14. Mani RL, Eisenberg RL (1978) Complications of catheter cerebral arteriography: analysis of 5,000 procedures. II. Relation of complication rates to clinical and arteriographic diagnoses. AJR Am J Roentgenol 131:867–869

    PubMed  CAS  Google Scholar 

  15. Mani RL, Eisenberg RL (1978) Complications of catheter cerebral arteriography: analysis of 5,000 procedures. III. Assessment of arteries injected, contrast medium used, duration of procedure, and age of patient. AJR Am J Roentgenol 131:871–874

    PubMed  CAS  Google Scholar 

  16. Mani RL, Eisenberg RL, McDonald EJ Jr, Pollock JA, Mani JR (1978) Complications of catheter cerebral arteriography: analysis of 5,000 procedures. I. Criteria and incidence. AJR Am J Roentgenol 131:861–865

    PubMed  CAS  Google Scholar 

  17. Willinsky RA, Taylor SM, TerBrugge K, Farb RI, Tomlinson G, Montanera W (2003) Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology 227:522–528

    PubMed  Google Scholar 

  18. Hankey GJ, Warlow CP, Sellar RJ (1990) Cerebral angiographic risk in mild cerebrovascular disease. Stroke 21:209–222

    PubMed  CAS  Google Scholar 

  19. Pasqualin A, Barone G, Cioffi F, Rosta L, Scienza R, Da Pian R (1991) The relevance of anatomic and hemodynamic factors to a classification of cerebral arteriovenous malformations. Neurosurgery 28:370–379

    Article  PubMed  CAS  Google Scholar 

  20. Colombo F, Pozza F, Chierego G, Casentini L, De Luca G, Francescon P (1994) Linear accelerator radiosurgery of cerebral arteriovenous malformations: an update. Neurosurgery 34:14–20; discussion 20–21

    PubMed  CAS  Google Scholar 

  21. Friedman WA, Bova FJ (1992) Linear accelerator radiosurgery for arteriovenous malformations. J Neurosurg 77:832–841

    PubMed  CAS  Google Scholar 

  22. Lunsford LD, Kondziolka D, Flickinger JC, Bissonette DJ, Jungreis CA, Maitz AH, Horton JA, Coffey RJ (1991) Stereotactic radiosurgery for arteriovenous malformations of the brain. J Neurosurg 75:512–524

    PubMed  CAS  Google Scholar 

  23. Steinberg GK, Fabrikant JI, Marks MP, Levy RP, Frankel KA, Phillips MH, Shuer LM, Silverberg GD (1990) Stereotactic heavy-charged-particle Bragg-peak radiation for intracranial arteriovenous malformations. N Engl J Med 323:96–101

    Article  PubMed  CAS  Google Scholar 

  24. Yamamoto Y, Coffey RJ, Nichols DA, Shaw EG (1995) Interim report on the radiosurgical treatment of cerebral arteriovenous malformations. The influence of size, dose, time, and technical factors on obliteration rate. J Neurosurg 83:832–837

    Article  PubMed  CAS  Google Scholar 

  25. Karlsson B, Lax I, Soderman M (1999) Can the probability for obliteration after radiosurgery for arteriovenous malformations be accurately predicted? Int J Radiat Oncol Biol Phys 43:313–319

    Article  PubMed  CAS  Google Scholar 

  26. Pollock BE, Flickinger JC, Lunsford LD, Maitz A, Kondziolka D (1998) Factors associated with successful arteriovenous malformation radiosurgery. Neurosurgery 42:1239–1244; discussion 1244–1247

    Article  PubMed  CAS  Google Scholar 

  27. Petereit D, Mehta M, Turski P, Levin A, Strother C, Mistretta C, Mackie R, Gehring M, Kubsad S, Kinsella T (1993) Treatment of arteriovenous malformations with stereotactic radiosurgery employing both magnetic resonance angiography and standard angiography as a database. Int J Radiat Oncol Biol Phys 25:309–313

    PubMed  CAS  Google Scholar 

  28. Meder JF, Oppenheim C, Blustajn J, Nataf F, Merienne L, Lefkoupolos D, Laurent A, Merland JJ, Schlienger M, Fredy D (1997) Cerebral arteriovenous malformations: the value of radiologic parameters in predicting response to radiosurgery. AJNR Am J Neuroradiol 18:1473–1483

    PubMed  CAS  Google Scholar 

  29. Soderman M, Andersson T, Karlsson B, Wallace MC, Edner G (2003) Management of patients with brain arteriovenous malformations. Eur J Radiol 46:195–205

    Article  PubMed  Google Scholar 

  30. Engenhart R, Wowra B, Debus J, Kimmig BN, Hover KH, Lorenz W, Wannenmacher M (1994) The role of high-dose, single-fraction irradiation in small and large intracranial arteriovenous malformations. Int J Radiat Oncol Biol Phys 30:521–529

    PubMed  CAS  Google Scholar 

  31. Colombo F, Benedetti A, Pozza F, Marchetti C, Chierego G (1989) Linear accelerator radiosurgery of cerebral arteriovenous malformations. Neurosurgery 24:833–840

    PubMed  CAS  Google Scholar 

  32. Duma CM, Lunsford LD, Kondziolka D, Bissonette DJ, Somaza S, Flickinger JC (1993) Radiosurgery for vascular malformations of the brain stem. Acta Neurochir Suppl (Wien) 58:92–97

    CAS  Google Scholar 

  33. Kemeny AA, Dias PS, Forster DM (1989) Results of stereotactic radiosurgery of arteriovenous malformations: an analysis of 52 cases. J Neurol Neurosurg Psychiatry 52:554–558

    Article  PubMed  CAS  Google Scholar 

  34. Chang JH, Chang JW, Park YG, Chung SS (2000) Factors related to complete occlusion of arteriovenous malformations after gamma knife radiosurgery. J Neurosurg 93 [Suppl 3]:96–101

    PubMed  Google Scholar 

  35. Houdart E, Gobin YP, Casasco A, Aymard A, Herbreteau D, Merland JJ (1993) A proposed angiographic classification of intracranial arteriovenous fistulae and malformations. Neuroradiology 35:381–385

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nagaraja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagaraja, S., Lee, K.J., Coley, S.C. et al. Stereotactic radiosurgery for brain arteriovenous malformations: quantitative MR assessment of nidal response at 1 year and angiographic factors predicting early obliteration. Neuroradiology 48, 821–829 (2006). https://doi.org/10.1007/s00234-006-0131-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-006-0131-y

Keywords

Navigation