Skip to main content

Advertisement

Log in

Brain arteriovenous malformations: measurement of nidal volume using a combination of static and dynamic magnetic resonance angiography techniques

  • Interventional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Arteriovenous malformations of the brain are complex vascular lesions that are an important cause of death and long-term disability. Currently, catheter angiography (CA) is the reference standard procedure for the diagnosis and follow-up of treated arteriovenous malformations (AVMs). This is an invasive procedure with potential risks. Magnetic resonance angiography (MRA) is commonly used in neurovascular imaging as a non-invasive alternative. Various MRA techniques have been used in the diagnosis and follow-up of AVMs but these have suffered from lack of temporal or spatial resolution. In this 60-patient study we describe the combination of two techniques: dynamic magnetic resonance digital subtraction angiography with a high temporal resolution, and a non-dynamic contrast-enhanced time-of-flight sequence with a high spatial resolution technique, in the assessment of AVM. The results showed an excellent correlation between MRA and CA measurement of both maximum linear dimension and AVM nidus volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fleetwood IG, Steinberg GK (2002) Arteriovenous malformations. Lancet 359:863–873

    Google Scholar 

  2. Arteriovenous Malformation Study Group (1999) Arteriovenous malformations of the brain in adults. N Engl J Med 340:1812–1818

    Google Scholar 

  3. Brown RD Jr, Wiebers DO, Torner JC, O’Fallon WM (1996) Frequency of intracranial hemorrhage as a presenting symptom and subtype analysis: a population-based study of intracranial vascular malformations in Olmsted Country, Minnesota. J Neurosurg 85:29–32

    Google Scholar 

  4. Willinsky RA, Taylor SM, TerBrugge K, Farb RI, Tomlinson G, Montanera W (2003) Neurologic complications of cerebral angiography: prospective analysis of 2899 procedures and review of the literature. Radiology 227:522–528

    Google Scholar 

  5. Hankey GJ, Warlow CP, Sellar RJ (1990) Cerebral angiographic risk in mild cerebrovascular disease. Stroke 21:209–222

    Google Scholar 

  6. Coley SC, Wild JM, Wilkinson ID, Griffiths PD (2003) Neurovascular MRI with dynamic contrast-enhanced subtraction angiography. Neuroradiology 45:843–850

    Google Scholar 

  7. Griffiths PD, Hoggard N, Warren DJ, Wilkinson ID, Anderson B, Romanowski CA (2000) Brain arteriovenous malformations: assessment with dynamic MR digital subtraction angiography. AJNR Am J Neuroradiol 21:1892–1899

    Google Scholar 

  8. Warren DJ, Hoggard N, Walton L, Radatz MW, Kemeny AA, Forster DM, Wilkinson ID, Griffiths PD (2001) Cerebral arteriovenous malformations: comparison of novel magnetic resonance angiographic techniques and conventional catheter angiography. Neurosurgery 48:973–982; discussion 982–983

    Google Scholar 

  9. Aoki S, Yoshikawa T, Hori M, Nanbu A, Kumagai H, Nishiyama Y, Nukui H, Araki T (2000) MR digital subtraction angiography for the assessment of cranial arteriovenous malformations and fistulas. AJR Am J Roentgenol 175:451–453

    Google Scholar 

  10. Spetzler RF, Martin NA (1986) A proposed grading system for arteriovenous malformations. J Neurosurg 65:476–483

    Google Scholar 

  11. Lunsford LD, Kondziolka D, Flickinger JC, Bissonette DJ, Jungreis CA, Maitz AH, Horton JA, Coffey RJ (1991) Stereotactic radiosurgery for arteriovenous malformations of the brain. J Neurosurg 75:512–524

    Google Scholar 

  12. Steiner L, Lindquist C, Adler JR, Torner JC, Alves W, Steiner M (1992) Clinical outcome of radiosurgery for cerebral arteriovenous malformations. J Neurosurg 77:1–8

    Google Scholar 

  13. Yamamoto Y, Coffey RJ, Nichols DA, Shaw EG (1995) Interim report on the radiosurgical treatment of cerebral arteriovenous malformations. The influence of size, dose, time, and technical factors on obliteration rate. J Neurosurg 83:832–837

    Google Scholar 

  14. Debrun G, Aletich V, Ausman JI, Charbel F, Dujovny M (1997) Embolization of the nidus of brain arteriovenous malformation with n-butyl cyanoacrylate. Neurosurgery 40:112–121

    Google Scholar 

  15. Gobin YP, Laurent A, Merienne L, Schlienger M, Aymard A, Houdart E, Casasco A, Lefkopoulos D, George B, Merland JJ (1996) Treatment of brain arteriovenous malformations by embolization and radiosurgery. J Neurosurg 85:19–28

    Google Scholar 

  16. Oppenheim C, Meder JF, Trystram D, Nataf F, Godon-Hardy S, Blustajn J, Merienne L, Schlienger M, Fredy D (1999) Radiosurgery of cerebral arteriovenous malformations: is an early angiogram needed?. AJNR Am J Neuroradiol 20:475–481

    Google Scholar 

  17. Mani RL, Eisenberg RL (1978) Complications of catheter cerebral arteriography: analysis of 5,000 procedures. III. Assessment of arteries injected, contrast medium used, duration of procedure, and age of patient. AJR Am J Roentgenol 131:871–874

    Google Scholar 

  18. Mani RL, Eisenberg RL (1978) Complications of catheter cerebral arteriography: analysis of 5,000 procedures. II. Relation of complication rates to clinical and arteriographic diagnoses. AJR Am J Roentgenol 131:867–869

    Google Scholar 

  19. Mani RL, Eisenberg RL, McDonald EJ Jr, Pollock JA, Mani JR (1978) Complications of catheter cerebral arteriography: analysis of 5,000 procedures. I. Criteria and incidence. AJR Am J Roentgenol 131:861–865

    Google Scholar 

  20. Kato K, Tomura N, Takahashi S, Sakuma I, Watarai J (2003) Ischemic lesions related to cerebral angiography: evaluation by diffusion weighted MR imaging. Neuroradiology 45:39–43

    Google Scholar 

  21. Bendszus M, Koltzenburg M, Burger R, Warmuth-Metz M, Hofmann E, Solymosi L (1999) Silent embolism in diagnostic cerebral angiography and neurointerventional procedures: a prospective study. Lancet 354:1594–1597

    Google Scholar 

  22. Mori H, Aoki S, Okubo T, Hayashi N, Masumoto T, Yoshikawa T, Tago M, Shin M, Kurita H, Abe O, Ohtomo K (2003) Two-dimensional thick-slice MR digital subtraction angiography in the assessment of small to medium-size intracranial arteriovenous malformations. Neuroradiology 45:27–33

    Google Scholar 

  23. Blatter DD, Parker DL, Ahn SS, Bahr AL, Robison RO, Schwartz RB, Jolesz FA, Boyer RS (1992) Cerebral MR angiography with multiple overlapping thin slab acquisition. Part II. Early clinical experience. Radiology 183:379–389

    Google Scholar 

  24. Blatter DD, Parker DL, Robison RO (1991) Cerebral MR angiography with multiple overlapping thin slab acquisition. Part I. Quantitative analysis of vessel visibility. Radiology 179:805–811

    Google Scholar 

  25. Essig M, Engenhart R, Knopp MV, Bock M, Scharf J, Debus J, Wenz F, Hawighorst H, Schad LR, van Kaick G (1996) Cerebral arteriovenous malformations: improved nidus demarcation by means of dynamic tagging MR-angiography. Magn Reson Imaging 14:227–233

    Google Scholar 

  26. Klisch J, Strecker R, Hennig J, Schumacher M (2000) Time-resolved projection MRA: clinical application in intracranial vascular malformations. Neuroradiology 42:104–107

    Google Scholar 

  27. Parker DL, Tsuruda JS, Goodrich KC, Alexander AL, Buswell HR (1998) Contrast-enhanced magnetic resonance angiography of cerebral arteries. A review. Invest Radiol 33:560–572

    Google Scholar 

  28. Tsuchiya K, Katase S, Yoshino A, Hachiya J (2000) MR digital subtraction angiography of cerebral arteriovenous malformations. AJNR Am J Neuroradiol 21:707–711

    Google Scholar 

  29. Smith HJ, Strother CM, Kikuchi Y, Duff T, Ramirez L, Merless A, Toutant S (1988) MR imaging in the management of supratentorial intracranial AVMs. AJR Am J Roentgenol 150:1143–1153

    Google Scholar 

  30. Pott M, Huber M, Assheuer J, Bewermeyer H (1992) Comparison of MRI, CT and angiography in cerebral arteriovenous malformations. Bildgebung 59:98–102

    Google Scholar 

  31. Liu K, Rutt BK (1998) Sliding interleaved kY (SLINKY) acquisition: a novel 3D MRA technique with suppressed slab boundary artifact. J Magn Reson Imaging 8:903–911

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nagaraja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagaraja, S., Capener, D., Coley, S.C. et al. Brain arteriovenous malformations: measurement of nidal volume using a combination of static and dynamic magnetic resonance angiography techniques. Neuroradiology 47, 387–392 (2005). https://doi.org/10.1007/s00234-005-1349-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-005-1349-9

Keywords

Navigation