Skip to main content

Advertisement

Log in

Signal intensity of the normal pontine tegmentum on T2-weighted MR imaging

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

On T2-weighted MR images, the pontine tegmentum frequently shows a signal of high intensity in neurologically healthy individuals. We examined whether the signal intensity of the pontine tegmentum normally differs from that of the pontine base. We evaluated the signal intensity of the pontine tegmentum and pontine base on T2-weighted images from 38 neurologically healthy subjects. The subjects included 29 adults (16 males and 13 females, age range 23-48 years, mean age 39.5 years) and 9 children (4 boys and 5 girls (age range 4-9 years mean age 6.5 years). We compared the contrast-to-noise ratio (CNR) between the tegmentum and the base in the upper pons, midpons and lower pons, and evaluated the signal intensity ratio of the tegmentum to the base. The CNR was significantly higher for the tegmentum than the base at each level of the pons (P<0.0001), and the signal intensity ratio of the tegmentum to the base in the upper pons was significantly higher in children than in adults (P<0.005). On T2-weighted images, a high signal intensity of the pontine tegmentum is frequently seen in neurologically healthy subjects. This finding should not be considered abnormal, particularly in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vymazal J, Hajeck M, Patronas N, et al (1995) The quantitative relation between T1-weighted and T2-weighted MRI of normal gray matter and iron concentration. J Magn Reson Imaging 5:554–560

    Article  PubMed  CAS  Google Scholar 

  2. Hirai T, Korogi Y, Sakamoto Y, et al (1996) T2 shortening in motor cortex: effect of aging and cerebrovascular disease. Radiology 199:799–803

    PubMed  CAS  Google Scholar 

  3. Korogi Y, Hirai T, Komohara Y, et al (1997) T2 shortening in the visual cortex: effect of aging and cerebrovascular disease. AJNR Am J Neuroradiol 18:711–714

    PubMed  CAS  Google Scholar 

  4. Hirai T, Korogi Y, Yoshizumi K, et al (2000) Limbic lobe of the human brain: evaluation with turbo fluid-attenuated inversion-recovery MR imaging. Radiology 215:470–475

    PubMed  CAS  Google Scholar 

  5. Georgiades CS, Itoh R, Golsy X, et al (2001) MR imaging of human brain at 1.5T: regional variations in transverse relaxation rates in the cerebral cortex. AJNR Am J Neuroradiol 22:1732–1737

    PubMed  CAS  Google Scholar 

  6. Fatterpekar GM, Naidich TP, Delman BN, et al (2002) Cytoarchitecture of the human cerebral cortex: MR microscopy of excised specimens at 9.4 Tesla. AJNR Am J Neuroradiol 23:1313–1321

    PubMed  Google Scholar 

  7. Chen JC, Hardy PA, Kucharczyk W, et al (1993) MR of human postmortem brain tissue: correlative study between T2 and assays of iron and ferritin in Parkinson and Huntington disease. AJNR Am J Neuroradiol 14:275–281

    PubMed  CAS  Google Scholar 

  8. Whittall KP, MacKay AL, Graeb DA, et al (1997) In vivo measurement of T2 distribution and water contents in normal human brain. Magn Reson Med 37:34–43

    Article  PubMed  CAS  Google Scholar 

  9. Flannigan BD, Bradley WG, Maziotta JC, et al (1985) Magnetic resonance imaging of the brain stem: normal structures and basic functional anatomy. Radiology 154:375–383

    PubMed  CAS  Google Scholar 

  10. Torack RM, Alcala H, Gado M, et al (1976) Correlative assay of computerized cranial tomography (CCT) water content and specific gravity in normal and pathological postmortem brain. J Neuropathol Exp Neurol 35:385–392

    PubMed  CAS  Google Scholar 

  11. Brooks RA, Di Chiro G, Keller MR (1980) Explanation of cerebral white–gray contrast in computed tomography. J Comput Assist Tomogr 4:489–491

    Article  PubMed  CAS  Google Scholar 

  12. Takagi H, Shapiro K, Marmarou H, et al (1981) Microgravimetric analysis of human brain tissue: correlation with computerized tomography scanning. J Neurosurg 54:797–801

    PubMed  CAS  Google Scholar 

  13. Hittmair K, Kramer J, Rand T, et al (1996) Infratentorial brain maturation: a comparison of MRI at 0.5 and 1.5 T. Neuroradiology 38:390–396

    Google Scholar 

  14. Novak P, Novac V, Kangarlu A, et al (2001) High resolution MRI of the brainstem at 8 T. J Comput Assist Tomogr 25(2):242–246

    Article  PubMed  CAS  Google Scholar 

  15. Miller AK, Alston RL, Corsellis JA (1980) Variation with age in the volumes of grey and white matter in the cerebral hemispheres of man: measurements with an image analyser. Neuropathol Appl Neurobiol 6:119–132

    Article  PubMed  CAS  Google Scholar 

  16. Barkovich AJ, Kjos BO, Jackson DE, et al (1998) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166:173–180

    Google Scholar 

  17. Barkovich AJ (ed) (1990) Pediatric neuroimaging. Lippincott Williams & Wilkins, New York, pp 5–34

    Google Scholar 

  18. van der Knaap MS, Valk J, de Neeling N, et al (1991) Pattern recognition in MRI of white matter disorders in children and young adults. Neuroradiology 33:478–493

    Article  PubMed  Google Scholar 

  19. Martin E, Krassnitzer S, Kaelin P, et al (1991) MR imaging of the brainstem: normal postnatal development. Neuroradiology 33:391–395

    Article  PubMed  CAS  Google Scholar 

  20. Barkovich AJ (1998) MR of normal neonatal brain: assessment of deep structures. AJNR Am J Neuroradiol 19:1397–1403

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiaki Asao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asao, C., Hirai, T., Imuta, M. et al. Signal intensity of the normal pontine tegmentum on T2-weighted MR imaging. Neuroradiology 48, 166–170 (2006). https://doi.org/10.1007/s00234-005-0035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-005-0035-2

Keywords

Navigation