Skip to main content
Log in

Assessment of vasospasm in experimental subarachnoid hemorrhage in rats by selective biplane digital subtraction angiography

  • Interventional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Although the rat subarachnoid hemorrhage model is well established in vasospasm research, the angiographic evaluation is difficult due to the animal’s small size. For this reason, the aim of the study was to develop a standardized angiographic examination technique without additional complex equipment. Under general anesthesia, 11 Sprague-Dawley rats underwent selective cerebral digital subtraction angiography using a 0.3 mm focal spot and a 2.0-fold linear magnification. Five animals had experimental subarachnoid hemorrhage according to the “double-hemorrhage” model. Comparison with the intraarterial tip of the microcatheter enabled calibration of the vessel lumen. The diameter of the normal basilar artery (n=6) was 0.34±0.03 mm (mean±SD), whereas delayed vasospastic constriction (mean 6.2 days) caused a reduction in diameter of 32.4% (0.23±0.09 mm) as well as impaired collateral blood flow via the posterior communicating artery and anterior spinal artery. Histological examination of sections stained with hematoxylin and eosin under a light microscope confirmed vasospasm. In conclusion, biplane digital subtraction angiography allows precise and reliable evaluation of arterial diameter reduction and hemodynamic parameters in a rat vasospasm model. However, further investigation is required for assessment of vasoactive drugs, e.g., endothelin receptor antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Macdonald RL, Weir B (2001) Cerebral vasospasm. Academic Press, San Diego, pp 17–508

    Google Scholar 

  2. Dorsch NW, King MT (1994) A review of cerebral vasospasm in aneurysmal subarachnoid hemorrhage. Part I. Incidence and effects. J Clin Neurosci 1:19–24

    Article  PubMed  CAS  Google Scholar 

  3. Dorsch NW (1995) Cerebral arterial spasm—a clinical review. Br J Neurosurg 9:403–412

    Article  PubMed  CAS  Google Scholar 

  4. Solomon RA, Antunes JL, Chen RY, Bland L, Chien S (1985) Decrease in cerebral blood flow in rats after experimental subarachnoid hemorrhage: a new animal model. Stroke 16:58–64

    PubMed  CAS  Google Scholar 

  5. Solomon RA, Lovitz RL, Hegemann MT, et al (1987) Regional cerebral metabolic activity in the rat following experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 7:193–198

    PubMed  CAS  Google Scholar 

  6. Megyesi JF, Vollrath B, Cook DA, Findlay M (2000) In vivo animal models of cerebral vasospasm: a review. Neurosurgery 46:448–461

    Article  PubMed  CAS  Google Scholar 

  7. Prunell GF, Mathiesen T, Svendgaard N-A (2002) A new experimental model in rats for study of the pathophysiology of subarachnoid hemorrhage. Neuroreport 13:2553–2556

    Article  PubMed  Google Scholar 

  8. Prunell GF, Mathiesen T, Diemer NH, Svendgaard N-A (2003) Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery 52:165–176

    Article  PubMed  Google Scholar 

  9. Delgado-Zygmunt TJ, Arbab MA, Shiokawa Y, Svendgaard NA (1992) A primate model for acute and late cerebral vasospasm: angiographic findings. Acta Neurochir (Wien) 118:130–136

    Article  CAS  Google Scholar 

  10. Barry KJ, Gogjian MA, Stein BM (1979) Small animal model for investigation of sub arachnoid hemorrhage and cerebral vasospasm. Stroke 10:538–541

    PubMed  CAS  Google Scholar 

  11. Alkan T, Korfali E, Kahveci N (2002) Experimental subarachnoid hemorrhage models in rats. Acta Neurochir Suppl 83:61–69

    PubMed  CAS  Google Scholar 

  12. Nikaido H, Tsunoda H, Nishimura Y, Kirino T, Tanaka T (2004) Potential role for heat shock protein 72 in antagonizing cerebral vasospasm after rat subarachnoid hemorrhage. Circulation 110:1839–1846

    Article  PubMed  CAS  Google Scholar 

  13. Hansen-Schwartz J, Hoel NL, Xu CB, Svendgaard N-A, Edvinsson L (2003) Subarachnoid hemorrhage-induced upregulation of the 5-HT1B receptor in cerebral arteries in rats. Neurosurgery 99:115–120

    Article  CAS  Google Scholar 

  14. Aladag MA, Turkoz Y, Sahna E, Parlakpinar H, Gul M (2003) The attenuation of vasospasm by using a SOD mimetic after experimental subarachnoid hemorrhage in rats. Acta Neurochir 145:673–677

    Article  CAS  Google Scholar 

  15. Zimmermann M, Seifert V (1998) Endothelin and subarachnoid hemorrhage: an overview. Neurosurgery 43:863–875

    Article  PubMed  CAS  Google Scholar 

  16. Zimmermann M, Jung CS, Vatter H, Raabe A, Seifert V (2002) Effect of endothelin-converting enzyme inhibitors on big endothelin-1 induced contraction in isolated rat basilar artery. Acta Neurochir 144:1213–1219

    Article  CAS  Google Scholar 

  17. Vatter H, Zimmermann M, Seifert V, Schilling L (2004) Experimental approaches to evaluate endothelin-A receptor antagonists. Methods Find Exp Clin Pharmacol 26:277–286

    PubMed  CAS  Google Scholar 

  18. Longo M, Blandino A, Ascenti G, et al (2002) Cerebral angiography in the rat with mammographic equipment: a simple cost-effective method for assessing vasospasm in experimental subarachnoid hemorrhage. Neuroradiology 44:689–694

    Article  PubMed  CAS  Google Scholar 

  19. Verlooy J, Reempts JV, Haseldonckx M, Borgers M, Selosse P (1992) The course of vasospasm following subarachnoid hemorrhage in rats. A vertebrobasilar angiographic study. Acta Neurochir (Wien) 117:48–52

    Article  CAS  Google Scholar 

  20. Delgado TJ, Brismar J, Svendgaard NA (1985) Subarachnoid hemorrhage in the rat: angiography and fluorescence microscopy of the major cerebral arteries. Stroke 16:595–602

    PubMed  CAS  Google Scholar 

  21. Piepgras A, Thome C, Schmiedek P (1995) Characterization of an anterior circulation rat subarachnoid hemorrhage model. Stroke 26:2347–2352

    PubMed  CAS  Google Scholar 

  22. Luedemann W, Brinker T, Schuhmann MU, von Brenndorf AI, Samii M (1998) Direct magnification technique for cerebral angiography in the rat. Invest Radiol 33:421–424

    Article  PubMed  CAS  Google Scholar 

  23. Boullin DJ, Aitken V, du Boulay GH, Tagari P (1981) The calibre of cerebral arteries of the rat studied by carotid angiography: a model system for studying the aetiology of human cerebral arterial constriction after aneurysmal rupture. Neuroradiology 21:245–252

    Article  PubMed  CAS  Google Scholar 

  24. Ono S, Date I, Nakajima M, et al (1997) Three-dimensional analysis of vasospastic major cerebral arteries in rats with corrosion cast technique. Stroke 28:1631–1638

    PubMed  CAS  Google Scholar 

  25. Sancak T, Silav G, Egemen N, Aldur M (2002) Subarachnoid hemorrhage-induced chronic cerebral vasospasm in the rabbit: iv-DSA versus ia-DSA. Acta Neurochir (Wien) 144:929–931

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Marina Eberhardt for technical assistance and Bernard Yan for carefully reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Weidauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weidauer, S., Vatter, H., Dettmann, E. et al. Assessment of vasospasm in experimental subarachnoid hemorrhage in rats by selective biplane digital subtraction angiography. Neuroradiology 48, 176–181 (2006). https://doi.org/10.1007/s00234-005-0021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-005-0021-8

Keywords

Navigation