Skip to main content
Log in

Mapping hypercapnia-induced cerebrovascular reactivity using BOLD MRI

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Severe carotid artery stenosis or occlusion may put patients at risk for ischaemic stroke. Reduced cerebrovascular reserve capacity is a possible indicator of an imminent ischaemic event and can be determined by assessment of cerebrovascular reactivity to a vasodilative stimulus. However, little is known about the distribution of cerebrovascular reactivity in healthy individuals. In 13 healthy volunteers, dynamic T2* MR images, acquired at alternating inspiratory pCO2 levels, showed a high percentage of signal change in grey matter, with a strong linear correlation with end-tidal pCO2. The mean percentages of signal change for grey and white matter were 5.9±1.2% and 1.9±0.5%, respectively. The mean time lag between CO2 stimulus and haemodynamic response was 15±4 s for grey matter and 180±12 s for white matter. Parameter mapping revealed a hemispherically symmetrical and homogeneous distribution of cerebrovascular reactivity over the entire grey matter. These findings indicate that it may be feasible to detect exhausted cerebrovascular autoregulation in patients with a compromised cerebral vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–c
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. North American Symptomatic Carotid Endarterectomy Trial Collaborators (1991) Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med 325:445–453

    PubMed  Google Scholar 

  2. European Carotid Surgery Trialists’ Collaborative Group (1991) MRC European Carotid Surgery Trial: interim results for symptomatic patients with severe (70–99%) or with mild (0–29%) carotid stenosis. Lancet 337:1235–1243

    Article  PubMed  Google Scholar 

  3. Klijn CJ, Kappelle LJ, Tulleken CA, van Gijn J (1997) Symptomatic carotid artery occlusion. A reappraisal of hemodynamic factors. Stroke 28:2084–2093

    CAS  PubMed  Google Scholar 

  4. Derdeyn CP, Yundt KD, Videen TO, Carpenter DA, Grubb RL Jr, Powers WJ (1998) Increased oxygen extraction fraction is associated with prior ischemic events in patients with carotid occlusion. Stroke 29:754–758

    CAS  PubMed  Google Scholar 

  5. Gibbs JM, Wise RJ, Leenders KL, Jones T (1984) Evaluation of cerebral perfusion reserve in patients with carotid-artery occlusion. Lancet 1:310–314

    Article  CAS  PubMed  Google Scholar 

  6. Vernieri F, Pasqualetti P, Passarelli F, Rossini PM, Silvestrini M (1999) Outcome of carotid artery occlusion is predicted by cerebrovascular reactivity. Stroke 30:593–598

    CAS  PubMed  Google Scholar 

  7. Kleiser B, Widder B (1992) Course of carotid artery occlusions with impaired cerebrovascular reactivity. Stroke 23:171–174

    CAS  PubMed  Google Scholar 

  8. Markus H, Cullinane M (2001) Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain 124:457–467

    Article  CAS  PubMed  Google Scholar 

  9. Lam JM, Smielewski P, al-Rawi P, Griffiths P, Yu AL, Pickard JD, Kirkpatrick PJ (2000) Prediction of cerebral ischaemia during carotid endarterectomy with preoperative CO2-reactivity studies and angiography. Br J Neurosurg 14:441–448

    Article  CAS  PubMed  Google Scholar 

  10. Lythgoe DJ, Williams SC, Cullinane M, Markus HS (1999) Mapping of cerebrovascular reactivity using BOLD magnetic resonance imaging. Magn Reson Imaging 17:495–502

    Article  CAS  PubMed  Google Scholar 

  11. Vesely A, Sasano H, Volgyesi G, Somogyi R, Tesler J, Fedorko L, Grynspan J, Crawley A, Fisher JA, Mikulis D (2001) MRI mapping of cerebrovascular reactivity using square wave changes in end-tidal PCO2. Magn Reson Med 45:1011–1013

    Article  CAS  PubMed  Google Scholar 

  12. Kastrup A, Kruger G, Neumann-Haefelin T, Moseley ME (2001) Assessment of cerebrovascular reactivity with functional magnetic resonance imaging: comparison of CO(2) and breath holding. Magn Reson Imaging 19:13–20

    Article  CAS  PubMed  Google Scholar 

  13. Rostrup E, Larsson HB, Toft PB, Garde K, Thomsen C, Ring P, Sondergaard L, Henriksen O (1994) Functional MRI of CO2 induced increase in cerebral perfusion. NMR Biomed 7:29–34

    CAS  PubMed  Google Scholar 

  14. Davis TL, Kwong KK, Weisskoff RM, Rosen BR (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci U S A 95:1834–1839

    Google Scholar 

  15. Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB (1999) Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci U S A 96:9403–9408

    Google Scholar 

  16. Schwarzbauer C, Heinke W (1999) Investigating the dependence of BOLD contrast on oxidative metabolism. Magn Reson Med 41:537–543

    Google Scholar 

  17. Rostrup E, Larsson HB, Toft PB, Garde K, Ring PB, Henriksen O (1996) Susceptibility contrast imaging of CO2-induced changes in the blood volume of the human brain. Acta Radiol 37:813–822

    Google Scholar 

  18. Kety S, Schmidt C (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 27:476–484

    Google Scholar 

Download references

Acknowledgment

We would like to thank H.G.J. Boere for technical assistance in the design and construction of the breathing circuit and for participating in conducting the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. M. Hofman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Zande, F.H.R., Hofman, P.A.M. & Backes, W.H. Mapping hypercapnia-induced cerebrovascular reactivity using BOLD MRI. Neuroradiology 47, 114–120 (2005). https://doi.org/10.1007/s00234-004-1274-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-004-1274-3

Keywords

Navigation