Skip to main content

Advertisement

Log in

Diffuse vertebral body edema due to calcified intraspongious disk herniation

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

We describe the case of a patient with a recent history of high back pain, with magnetic resonance imaging (MRI) of the thoracic spine showing intervertebral disk herniation into the spongious bone of the vertebral body of T9 that might have caused diffuse, low signal intensity on fluid-attenuated inversion recovery T1-weighted (FLAIR-T1W) images, high signal intensity magnetic resonance (MR) on T2-weighted (T2W) images and T2-weighted fat-suppressed images (T2W-FSIs) and marked enhancement on the vertebral body of T9 with gadolinium on T1-weighted fat-suppressed images (T1W-FSIs) images. Those findings suggested diffuse edema and might be indistinguishable from tumoral or inflammatory diseases, but the plain films and the reformatted sagittal computed tomography scans of the thoracic spine were helpful to show a calcified part of the intervertebral disk migrating into the vertebral body of T9. The patient made full recovery from the symptoms after conservative treatment and at the follow-up MRI showed normalization of the bone marrow signal intensity of the vertebral body of T9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jensen MC, Brant-Zawadzki MN, Obuchowski N, Modic MT, Malkasian D, Ross JS (1994) Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med 331:69–73

    Article  CAS  PubMed  Google Scholar 

  2. Pfirrmann CWA, Resnick D (2001) Schmorl nodes of the thoracic and lumbar spine: radiographic–pathologic study of prevalence, characterization, and correlation with degenerative changes of 1,650 spinal levels in 100 cadavers. Radiology 219:368–374

    CAS  PubMed  Google Scholar 

  3. Grivé E, Rovira A, Capellades J, Rivas A, Pedraza S (1999) Radiologic findings in two cases of acute Schmorl’s nodes. AJNR Am J Neuroradiol 20:1717–1721

    PubMed  Google Scholar 

  4. Walters G, Coumas JM, Akins CM, Ragland RL (1991) Magnetic resonance imaging of acute symptomatic Schmorl’s node formation. Pediatr Emerg Care 7:294–296

    CAS  PubMed  Google Scholar 

  5. Takahashi K, Miyazaki T, Ohnari H, Takino T, Tomita K (1995) Schmorl’s nodes and low back pain. Analysis of magnetic resonance imaging findings in symptomatic and asymptomatic individuals. Eur Spine J 4:56–59

    Article  CAS  PubMed  Google Scholar 

  6. Seymor R, Willians LA, Rees JI, Lyons K, Lloyd DC (1998) Magnetic resonance imaging of acute intraosseous disc herniation. Clin Radiol 53:363–368

    PubMed  Google Scholar 

  7. Bangert BA, Modic MT, Ross JS, et al (1995) Hyperintense disks on T1-weighted MR images: correlation with calcification. Radiology 195:437–443

    CAS  PubMed  Google Scholar 

  8. Stabler A, Bellan M, Weiss M, Gartner C, Brossmann J, Reiser MF (1997) MR imaging of enhancing intraosseous disk herniation (Schmorl’s nodes). AJR Am J Roentgenol 168:933–938

    CAS  PubMed  Google Scholar 

  9. Wagner AL, Murtagh FR, Arrington JA, Stallworth D (2000) Relationship of Schmorl’s nodes to vertebral body endplate fractures and acute endplate disk extrusions. AJNR Am J Neuroradiol 21:276–281

    CAS  PubMed  Google Scholar 

  10. Roosen N, Dietrich U, Nicola N, Irlich G, Gahlen D, Stork W (1987) MR imaging of calcified herniated thoracic disk. J Comput Assist Tomogr 11:733–735

    CAS  PubMed  Google Scholar 

  11. Chanchairugira K, Chung CB, Papakonstantinou O, Lee MH, Clopton P, Resnick D (2004) Intervertebral disk calcification of the spine in an elderly population: radiographic prevalence, location, and correlation with spinal degeneration. Radiology 230:499–503

    PubMed  Google Scholar 

  12. Cheng XG, Brys P, Nijs J, Nicholson P, Jiang Y, Baert AL, Dequeker J (1996) Radiologic prevalence of lumbar intervertebral disk calcification in the elderly: an autopsy study. Skeletal Radiol 25:231–235

    Article  CAS  PubMed  Google Scholar 

  13. Kakitsubata Y, Theodorou DJ, Theodorou SJ, Tamura S, Nabeshima K, Trudell D, Clopton PL, Resnick D (2002) Cartilaginous endplates of the spine: MRI with anatomic correlation in cadavers. J Comput Assist Tomogr 26:933–940

    Article  PubMed  Google Scholar 

  14. Major NM, Helms CA, Genant HK (1993) Calcification demonstrated as high signal intensity on T1-weighted MR images of the disks of the lumbar spine. Radiology 189:494–496

    CAS  PubMed  Google Scholar 

  15. Girard CJ, Schweitzer ME, Morrison WB, Parellada JA, Carrino JA (2004) Thoracic spine disc-related abnormalities: longitudinal MR imaging assessment. Skeletal Radiol 33:216–222

    Article  PubMed  Google Scholar 

  16. Hamanischi C, Kawabata T, Yosii T, Tanaka S (1994) Schmorl’s nodes on magnetic resonance imaging. Their clinical relevance. Spine 19:450–453

    PubMed  Google Scholar 

  17. Haugher O, Cotten A, Chateil JF, Borg O, Moinard M, Diard F (2001) Giant cystic Schmorl’s nodes: imaging findings in six patients. AJR Am J Roentgenol 176:969–972

    PubMed  Google Scholar 

  18. Delbeke D, Powers TA, Sandler MP (1989) Correlative radionuclide and magnetic resonance imaging in evaluation of the spine. Clin Nucl Med 14:742–749

    CAS  PubMed  Google Scholar 

  19. De Maeseneer M, Lenchik L, Everaert H, Marcelis S, Bossuyt A, Osteaux M, Beeckman P (1999) Evaluation of low back pain with bone scintigraphy and SPECT. Radiographics 19:901–911

    CAS  PubMed  Google Scholar 

  20. Baur A, Huber A, Wagner BE, Dur R, Zysk S, Arbogast S, Deimling M, Reiser M (2001) Diagnostic value of increased diffusion weighting of a steady-state free precession sequence for differentiating acute benign osteoporotic fractures from pathologic vertebral compression fractures. AJNR Am J Neuroradiol 22:366–372

    CAS  PubMed  Google Scholar 

  21. Byun WM, Shin SO, Chang Y, Lee SJ, Finsterbusch J, Frham J (2002) Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. AJNR Am J Neuroradiol 23:906–912

    PubMed  Google Scholar 

  22. Castillo M, Arbelaez A, Smith JK, Fischer LL (2000) Diffusion-weighted MR imaging offers no advantage over routine noncontrast MR imaging in the detection of vertebral metastases. AJNR Am J Neuroradiol 21:948–953

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.A. Rodacki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodacki, M., Castro, C. & Castro, D. Diffuse vertebral body edema due to calcified intraspongious disk herniation. Neuroradiology 47, 316–321 (2005). https://doi.org/10.1007/s00234-004-1262-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-004-1262-7

Keywords

Navigation