Skip to main content

Advertisement

Log in

Neurovascular MRI with dynamic contrast-enhanced subtraction angiography

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

The first generation of digital subtraction MR angiography using thick-slab contrast-enhanced 2D projection techniques has confirmed the potential of MRI to produce noninvasive subsecond angiograms of the craniocervical circulation. As time-resolved techniques become more sophisticated and 3D acquisitions can be obtained with high isotropic spatial resolution we may start to see the demise of catheter angiography as a diagnostic procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–e.
Fig. 2a–c.
Fig. 3a–c.
Fig. 4a–d.
Fig. 5a–d.

Similar content being viewed by others

References

  1. Marks MP (1995) Vascular malformations. Magn Reson Imaging Clin North Am 3: 485–491

    CAS  Google Scholar 

  2. Wilcock DJ, Jaspan T, Worthington BS (1995) Problems and pitfalls of 3-D TOF magnetic resonance angiography of the intracranial circulation. Clin Radiol 50: 526–532

    CAS  PubMed  Google Scholar 

  3. Farb RI, McGregor C, Kim JK et al (2001) Intracranial arteriovenous malformations: real-time auto-triggered elliptic centric-ordered 3D gadolinium-enhanced MR angiography—initial assessment. Radiology 220: 244–251

    CAS  PubMed  Google Scholar 

  4. Wilman AH, Riederer SJ (1997) Performance of an elliptical centric view order for signal enhancement and motion artefact suppression in breath-hold three-dimensional gradient echo imaging. Magn Reson Med 38: 793–802

    CAS  PubMed  Google Scholar 

  5. Korosec FR, Frayne R, Grist TM, Mistretta C (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36: 345–351

    CAS  PubMed  Google Scholar 

  6. Carroll TJ, Korosec FR, Petermann GM, Grist TM, Turski PA (2001) Carotid bifurcation: evaluation of time-resolved three-dimensional MR angiography. Radiology 220: 525–532

    CAS  PubMed  Google Scholar 

  7. Van Vaals JJ, Brummer ME, Dixon WT, et al (1993) "Keyhole" method for accelerating imaging of contrast uptake. J Magn Reson Imaging 3: 671–675

    PubMed  Google Scholar 

  8. Doyle M, Walsh EG, Blackwell GG, Pohost G (1995). Block regional interpolation scheme for k-space (BRISK): a rapid cardiac imaging technique. Magn Reson Med 33: 163–170

    CAS  PubMed  Google Scholar 

  9. Riederer SJ, Tasciyan T, Farzaneh F, Lee JN, Wright RC, Herfkens RJ (1988) MR fluoroscopy: technical feasibility. Magn Reson Med 8: 1–15

    CAS  PubMed  Google Scholar 

  10. Mistretta CA, Grist TM, Korosec FR, et al (1998) 3D time-resolved contrast-enhanced MR DSA: advantages and tradeoffs. Magn Reson Med 40: 571–581

    CAS  PubMed  Google Scholar 

  11. Frayne R, Grist TM, Swan JS, Peters DC, Korosec FR, Mistretta CA (2000) 3D MR DSA: effects of injection protocol and image masking. J Magn Reson Imaging 12: 476–487

    Article  CAS  PubMed  Google Scholar 

  12. Peters DC, Korosec FR, Grist TM, et al (2000) Undersampled projection reconstruction applied to MR angiography. Magn Reson Med 43: 91–101

    Google Scholar 

  13. Barger AV, Block WF, Toropov Y, Grist TM, Mistretta CA (2002) Time-resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory. Magn Reson Med 48: 297–305

    Article  PubMed  Google Scholar 

  14. Carroll TJ (2002) The emergence of time-resolved contrast-enhanced MR imaging for intracranial angiography. AJNR 23: 346–348

    Google Scholar 

  15. Wang Y, Johnston DL, Breen JF, et al (1996) Dynamic MR digital subtraction angiography using contrast enhancement, fast data acquisition, and complex subtraction. Magn Reson Med 36: 551–556

    CAS  PubMed  Google Scholar 

  16. Hennig J, Scheffler K, Laubenberger J, Strecker R (1997) Time resolved projection angiography after bolus injection of contrast agent. Magn Reson Med 37: 341–345

    CAS  Google Scholar 

  17. Strecker R, Scheffler K, Klisch J, et al (2000) Fast functional MRA using time-resolved projection MR-angiography with correlation analysis. Magn Reson Med 43: 303–309

    Google Scholar 

  18. Mori H, Aoki S, Okubo, et al (2003) Two-dimensional thick-slice MR digital subtraction angiography in the assessment of small to medium-size intracranial arteriovenous malformations. Neuroradiology 45: 27–33

    CAS  Google Scholar 

  19. Wetzel SG, Bilecen D, Lyrer P, et al (2000) Cerebral dural arteriovenous fistulas: detection by dynamic MR projection angiography. Am J Roentgenol 174: 1293–1295

    CAS  Google Scholar 

  20. Griffiths PD, Hoggard N, Warren DJ, Wilkinson ID, Anderson B, Romanowski CA (2000) Brain arteriovenous malformations: assessment with dynamic MR digital subtraction angiography. AJNR 21: 1892–1899

    CAS  Google Scholar 

  21. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42: 952–962

    Article  CAS  PubMed  Google Scholar 

  22. Golay X, Brown SJ, Itoh R, et al (2001) Time-resolved contrast-enhanced carotid MR angiography using sensitivity encoding (SENSE). AJNR 22: 1615–1619

    CAS  Google Scholar 

  23. Aoki S, Yoshikawa T, Hori M, et al (2000) MR digital subtraction angiography for the assessment of cranial arteriovenous malformations and fistulas. Am J Roentgenol 175: 451–453

    CAS  Google Scholar 

  24. Tsuchiya K, Katase S, Yoshino A, Hachiya J (2000) MR digital subtraction angiography of cerebral arteriovenous malformations. AJNR 21: 707–711

    CAS  Google Scholar 

  25. Warren DJ, Hoggard N, Walton L, et al (2001) Cerebral arteriovenous malformations: comparison of novel magnetic resonance angiographic techniques and conventional catheter angiography. Neurosurgery 48: 973–982

    CAS  PubMed  Google Scholar 

  26. Klisch J, Strecker R, Hennig J, Schumacher (2000) Time-resolved projection MRA: clinical application in intracranial vascular malformations. Neuroradiology 42: 104–107

    Google Scholar 

  27. Coley SC, Romanowski CAJ, Hodgson TJ, Griffiths PD (2002). Dural arteriovenous fistulae: non-invasive diagnosis with dynamic MR digital subtraction angiography. AJNR 23: 404–407

    Google Scholar 

  28. Lasjaunias P, Chiu M, Terbrugge KT, et al (1986) Neurological manifestations of intracranial dural sinus arteriovenous malformations. J Neurosurg 64: 724–730

    CAS  PubMed  Google Scholar 

  29. Aoki S, Yoshikawa T, Hori M, et al (2000) Two-dimensional thick-slice MR digital subtraction angiography for assessment of cerebrovascular occlusive diseases. Eur Radiol 10: 1858–1864

    Article  CAS  PubMed  Google Scholar 

  30. Wetzel SG, Haselhurst R, Bilecen, et al (2001) Preliminary experience with dynamic MR projection angiography in the evaluation of cervico-cranial steno-occlusive disease. Eur Radiol 11: 295–302

    Article  CAS  PubMed  Google Scholar 

  31. Connolly D, Jenkins S, Birchall D, English P, Mandel C (2002) Dynamic subtraction MR venography for the detection of dural sinus thrombosis: a new real-time imaging technique. Neuroradiology 44: 185 (abstract)

    Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the expertise of the radiographic staff working in the Academic Section of Radiology, University of Sheffield.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Coley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coley, S.C., Wild, J.M., Wilkinson, I.D. et al. Neurovascular MRI with dynamic contrast-enhanced subtraction angiography. Neuroradiology 45, 843–850 (2003). https://doi.org/10.1007/s00234-003-1075-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-003-1075-0

Keywords

Navigation