Skip to main content

Advertisement

Log in

Intellectual prognosis of the Dandy-Walker malformation in children: the importance of vermian lobulation

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Half of patients with the Dandy-Walker malformation (DWM) have normal intellectual development. We aimed to identify feature on MRI associated with good intellectual prognosis. We reviewed 20  patients with DWM diagnosed on MRI, mean age 14.6±9.9 years. We assessed their intellectual development and related it to the MRI features. We found two groups with a statistically different intellectual outcome. All 14 patients with normal intellectual development had a normal lobulation of the vermis, without supratentorial anomalies. Of the six patients with mental retardation, three had an abnormal vermis, together with dysgenesis of the corpus callosum. In the other three, there were normal vermian anatomy with associated anomalies. Normal lobulation of the vermis, in the absence of any supratentorial anomaly, appears to be a good prognostic factor in DWM. Preservation of cerebrocerebellar pathways and neonatal plasticity could explain the normal intellectual development. These findings might be useful in prenatal diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Dandy WE, Blackfan KD (1914) Internal hydrocephalus, an experimental, clinical and pathological study. Am J Dis Child 8: 406–482

    Google Scholar 

  2. Taggart JK, Walker AE (1942) Congenital atresia of the foramens of Luschka and Magendie. Arch Neurol Psychiatry 48: 583–612

    Google Scholar 

  3. Hart MN, Malamud N, Ellis WG (1972) The Dandy-Walker syndrome. A clinicopathological study based on 28 cases. Neurology 22: 771–780

    CAS  PubMed  Google Scholar 

  4. Barkovich AJ (1999) Pediatric neuroimaging, 3rd edn. Lippincott, Williams and Wilkins, Philadelphia, pp 337–345

  5. Altman NR, Naidich TP, Braffman BH (1992) Posterior fossa malformations. AJNR 13: 691–724

    CAS  Google Scholar 

  6. Barkovich AJ, Kjos BO, Norman D, Edwards MS (1989) Revised classification of posterior fossa cysts and cystlike malformations based on the results of multiplanar MR imaging. Am J Roentgenol 153: 1289–1300

    CAS  Google Scholar 

  7. Friden IJ, Reese V, Cohen D (1996) Phace syndrome. Arch Dermatol 132: 307–311

    CAS  PubMed  Google Scholar 

  8. Hirsch JF, Pierre-Kahn A, Renier D, Sainte-Rose C, Hoppe-Hirsch E (1984) The Dandy-Walker malformation. A review of 40 cases. J Neurosurg 61: 515–522

    CAS  PubMed  Google Scholar 

  9. Bindal AK, Storrs BB, McLone DG (1990) Management of the Dandy-Walker syndrome. Pediatr Neurosurg 16: 163–169

    PubMed  Google Scholar 

  10. Maria BL, Zinreich SJ, Carson BC, Rosenbaum AE, Freeman JM (1987) Dandy-Walker syndrome revisited. Pediatr Neurosci 13: 45–51

    CAS  PubMed  Google Scholar 

  11. Golden JA, Rorke LB, Bruce DA (1987) Dandy-Walker syndrome and associated anomalies. Pediatr Neurosci 13: 38–44

    CAS  PubMed  Google Scholar 

  12. Weschler D (1989) Weschler intelligence scale for children III, 3rd edn (WISC-III). Psychological Corporation, New York

  13. Brunet O, Lézine I (1981) Echelle de développement psychomoteur de la première enfance. EPA, Paris

  14. Ball WS Jr (1997) Pediatric neuroradiology. Lippincott-Raven, Philadelphia, pp 116–119

  15. Pascual-Castroviejo I, Velez A, Pascual-Pascual SI, Roche MC, Villarejo F(1991) Dandy-Walker malformation: analysis of 38 cases. Child's Nerv Syst 7: 88–97

    CAS  Google Scholar 

  16. Bourgeois M, Sainte-Rose C, Cinalli G, et al (1999) Epilepsy in children with shunted hydrocephalus. J Neurosurg 90: 274–281

    CAS  Google Scholar 

  17. Courchesne E, Yeung-Courchesne R, Egaas B (1994) Methodology in neuroanatomic measurement. Neurology 44: 203–208

    CAS  PubMed  Google Scholar 

  18. Rivière D, Papadopoulos-Orfanos J, Régis J, Mangin JF (2000) A structural browser of brain anatomy. Human Brain Mapping, San Antonio

  19. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121: 561–579

    Article  PubMed  Google Scholar 

  20. Levisohn L, Cronin-Golomb A, Schmahmann JD (2000) Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain 123: 1041–1050

    Article  PubMed  Google Scholar 

  21. Schmahmann JD (1996) From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp 4: 174–198

    Article  Google Scholar 

  22. Schmahmann JD, Pandya DN (1997) The cerebrocerebellar system. Int Rev Neurobiol 41: 31–60

    Google Scholar 

  23. Fox PT, Raichle ME, Thach WT (1985) Functional mapping of the human cerebellum with positron emission tomography. Proc Natl Acad Sci USA 82: 7462–7466

    CAS  PubMed  Google Scholar 

  24. Leiner HC, Leiner AL, Dow RS (1993) Cognitive and language functions of the human cerebellum. Trends Neurosci 16: 444–447

    CAS  PubMed  Google Scholar 

  25. Raichle ME, Fiez JA, Videen TO, et al (1994) Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb Cortex 4: 8–26

    CAS  PubMed  Google Scholar 

  26. Simpson JR, Ongur D, Akbudak E, et al (2000) The emotional modulation of cognitive processing: an fMRI study. J Cogn Neurosci 12 [Suppl 2]: 157–170

  27. Fiez JA, Balota DA, Raichle ME, Petersen SE (1999) Effects of lexicality, frequency, and spelling-to-sound consistency on the functional anatomy of Reading. Neuron 24: 205–218

    CAS  PubMed  Google Scholar 

  28. Fulbright RK, Jenner AR, Mencl WE, et al (1999) The cerebellum's role in reading: a functional MR imaging study. AJNR 20: 1925–1930

    CAS  Google Scholar 

  29. Allen G, Buxton RB, Wong EC, Courchesne E (1997) Attentional activation of the cerebellum independent of motor involvement. Science 275: 1940–1943

    CAS  PubMed  Google Scholar 

  30. Parvizi J, Anderson SW, Martin CO, Damasio H, Damasio AR (2001) Pathological laughter and crying: a link to the cerebellum. Brain 124: 1708–1719

    Article  CAS  PubMed  Google Scholar 

  31. Schaefer GB, Thompson JN, Bodensteiner JB, et al (1996) Hypoplasia of the cerebellar vermis in neurogenetic syndromes. Ann Neurol 39: 382–385

    CAS  Google Scholar 

  32. Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL (1988) Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med 318: 1349–1354

    CAS  PubMed  Google Scholar 

  33. Murakami JW, Courchesne E, Haas RH, Press GA, Yeung-Courchesne R (1992) Cerebellar and cerebral abnormalities in Rett syndrome: a quantitative MR analysis. Am J Roentgenol 159: 177–183

    CAS  Google Scholar 

  34. Bachevalier J, Brickson M, Hagger C, Mishkin M (1990) Age and sex differences in the effects of selective temporal lobe lesion on the formation of visual discrimination habits in rhesus monkeys (Macaca mulatta). Behav Neurosci 104: 885–899

    Article  CAS  Google Scholar 

  35. Bower AJ (1990) Plasticity in the adult and neonatal central nervous system. Br J Neurosurg 4: 253–264

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Boddaert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boddaert, N., Klein, O., Ferguson, N. et al. Intellectual prognosis of the Dandy-Walker malformation in children: the importance of vermian lobulation. Neuroradiology 45, 320–324 (2003). https://doi.org/10.1007/s00234-003-0980-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-003-0980-6

Keywords

Navigation