Abstract
Topological procedures to relate pseudoinequalities that define a pseudovariety of ordered algebras with inequalities that ultimately define it, and vice-versa, are presented.
This is a preview of subscription content,
to check access.References
Almeida, J.: Finite Semigroups and Universal Algebra. Series in Algebra 3. World Scientific (1995). https://doi.org/10.1142/2481
Banaschewski, B.: The Birkhoff theorem for varieties of finite algebras. Algebra Univers. 17(1), 360–368 (1983). https://doi.org/10.1007/BF01194543
Birkhoff, G.: On the structure of abstract algebras. Math. Proc. Cambridge Philos. Soc. 31(4), 433–454 (1935). https://doi.org/10.1017/S0305004100013463
Bloom, S.L.: Varieties of ordered algebras. J. Comput. Syst. Sci. 13(2), 200–212 (1976). https://doi.org/10.1016/S0022-0000(76)80030-X
Colcombet, T.: Regular cost functions, Part I: Logic and algebra over words. Log. Methods Comput. Sci. 9(3), 1–47 (2013). https://doi.org/10.2168/LMCS-9(3:3)2013
Eilenberg, S.: Automata, Languages, and Machines. Academic Press, Cambridge (1974)
Eilenberg, S., Schützenberger, M.P.: On pseudovarieties. Adv. in Math. 19(3), 413–418 (1976). https://doi.org/10.1016/0001-8708(76)90029-3
Fernandes, B.H.: Álgebras de estabilização. Master’s thesis, Faculdade de Ciências, Universidade de Lisboa (2018). http://hdl.handle.net/10451/34633
Higgins, P.M.: An algebraic proof that pseudovarieties are defined by pseudoidentities. Algebra Univers. 27(4), 597–599 (1990). https://doi.org/10.1007/BF01189004
Molchanov, V.: Nonstandard characterization of pseudovarieties. Algebra Univers. 33(4), 533–547 (1995). https://doi.org/10.1007/BF01225473
Pin, J.É., Weil, P.: A Reiterman theorem for pseudovarieties of finite first-order structures. Algebra Univers. 35(4), 577–595 (1996). https://doi.org/10.1007/BF01243597
Reiterman, J.: The Birkhoff theorem for finite algebras. Algebra Univers. 14(1), 1–10 (1982). https://doi.org/10.1007/BF02483902
Acknowledgements
This project was partially supported by Fundação para a Ciência e a Tecnologia, FCT, under the Projects UIDB/04621/2020, UIDP/04621/2020 and PTDC/MAT-PUR/31174/2017, within the activities of Centro de Matemática Computacional e Estocástica, CEMAT, and Departamento de Matemática da Faculdade de Ciências da Universidade de Lisboa. The authors would like to thank Mário J. J. Branco for the pertinent discussions and suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Jorge Almeida.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Fernandes, B.H., Gomes, G.M.S. A topological shuttle between inequalities and pseudoinequalities. Semigroup Forum 102, 916–924 (2021). https://doi.org/10.1007/s00233-021-10167-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00233-021-10167-0