Skip to main content
Log in

Some properties of \(LUC({\mathcal X},{\mathcal G})^*\) as a banach left \(LUC({\mathcal G})^*\)-module

  • Research Article
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

Associated with a locally compact group \(\mathcal G\) and a \(\mathcal G\)-space \(\mathcal X\) there is a Banach subspace \(LUC({\mathcal X},{\mathcal G})\) of \(C_b({\mathcal X})\), which has been introduced and studied by Chu and Lau (Math Z 268:649–673, 2011). In this paper, we study some properties of the first dual space of \(LUC({\mathcal X},{\mathcal G})\). In particular, we introduce a left action of \(LUC({\mathcal G})^*\) on \(LUC({\mathcal X},{\mathcal G})^*\) to make it a Banach left module and then we investigate the Banach subalgebra \({{\mathfrak {Z}}({\mathcal X},{\mathcal G})}\) of \(LUC({\mathcal G})^*\), as the topological centre related to this module action, which contains \(M({\mathcal G})\) as a closed subalgebra. Also, we show that the faithfulness of this module action is related to the properties of the action of \(\mathcal G\) on \(\mathcal X\) and we prove an analogue of the main result of Lau (Math Proc Cambridge Philos Soc 99:273–283, 1986) for \({\mathcal G}\)-spaces. Sufficient and/or necessary conditions for the equality \({{\mathfrak {Z}}({\mathcal X},{\mathcal G})}=M({\mathcal G})\) or \(LUC({\mathcal G})^*\) are given. Finally, we apply our results to some special cases of \(\mathcal G\) and \(\mathcal X\) for obtaining various examples whose topological centres \({{\mathfrak {Z}}({\mathcal X},{\mathcal G})}\) are \(M({\mathcal G})\), \(LUC({\mathcal G})^*\) or neither of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abel, M., Arhippainen, J., Kauppi, J.: Stone-Weierstrass type theorems for algebras containing continuous unbounded functions. Sci. Math. Jpn. 71, 1–10 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Arens, R.: The adjoint of a bilinear operation. Proc. Am. Math. Soc. 2, 839–848 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chan, P.K.: Topological centers of module actions induced by unitary representations. J. Funct. Anal. 259, 2193–2214 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chu, C.H., Leung, C.W.: Harmonic functions on homogeneous spaces. Monatsh. Math. 128, 227–235 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chu, C.H., Lau, A.T.-M.: Harmonic functions on topological groups and symmetric spaces. Math. Z. 268, 649–673 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dales, H.G., Rodrigues-Palacios, A., Velasco, M.V.: The second transpose of a derivation. J. Lond. Math. Soc. 64, 707–721 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daws, M.: Arens-regularity of algebras arising from tensor norms. N. Y. J. Math. 13, 215–270 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Eshaghi, M.: Gordji and M Filali, Arens regularity of module actions. Studia Math. 181, 237–254 (2007)

    Article  MathSciNet  Google Scholar 

  9. Eshaghi, M.: Gordji and M Filali, Weak amenability of the second dual of a Banach algebra. Studia Math. 182, 205–213 (2007)

    Article  MathSciNet  Google Scholar 

  10. Filali, M., Salmi, P.: One-sided ideals and right cancellation in the second dual of the group algebra and similar algebras. J. London Math. Soc. 75, 35–46 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Folland, G.B.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  12. Ghahramani, F.: Weighted group algebra as an ideal in its second dual space. Proc. Am. Math. Soc. 90, 71–76 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ghahramani, F., Lau, A.T.-M., Losert, V.: Isometric isomorphisms between Banach algebras related to locally compact groups. Trans. Am. Math. Soc. 321, 273–283 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grosser, M., Losert, V.: The norm-strict bidual of a Banach algebra and the dual of \(C_u(\cal{G})^*\). Manuscripta Math. 45, 127–146 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lashkarizadeh, M.: Bami, on the multipliers of the pair \((M_a(S), L^\infty (S;M_a(S)))\) of a foundation semigroup \(S\). Math. Nachr. 181, 73–80 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lau, A.T.-M.: Uniformly continuous functionals on the Fourier algebra of any locally compact group. Trans. Am. Math. Soc. 251, 39–59 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lau, A.T.-M.: The second conjugate algebra of the Fourier algebra of a locally compact group. Trans. Am. Math. Soc. 267, 53–63 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lau, A.T.-M.: Continuity of Arens multiplication on the dual space of bounded uniformly continuous functions on locally compact groups and topological semigroups. Math. Proc. Cambridge Philos. Soc. 99, 273–283 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lau, A.T.-M., Pym, J.: The topological centre of a compactification of a locally compact group. Math. Z. 219, 567–579 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mohammadzadeh, S., Vishki, H.R.E.: Arens regularity of module actions and the second adjoint of a derivation. Bull. Aust. Math. Soc. 77, 465–476 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Veech, W.A.: Topological dynamics. Bull. Am. Math. Soc. 83, 775–830 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zappa, A.: The centre of the convolution algebra \(C_u(\cal{G})^*\). Rend. Sem. Mat. Univ. Padova. 52, 71–83 (1975)

    MATH  Google Scholar 

Download references

Acknowledgements

We are indebted to the referee for the careful reading of the paper, the detailed criticism and their numerous remarks and suggestions which greatly improved the presentation of the paper. In particular, we corrected our mis-statements in Theorem 3.1 by the ones suggested by him/her.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Javanshiri.

Additional information

Communicated by Anthony To-Ming Lau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javanshiri, H., Tavallaei, N. Some properties of \(LUC({\mathcal X},{\mathcal G})^*\) as a banach left \(LUC({\mathcal G})^*\)-module. Semigroup Forum 98, 398–421 (2019). https://doi.org/10.1007/s00233-018-9947-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-018-9947-0

Keywords

Navigation