Homogeneous numerical semigroups

Research Article

Abstract

We introduce the concept of homogeneous numerical semigroups and show that all homogeneous numerical semigroups with Cohen–Macaulay tangent cones are of homogeneous type. In embedding dimension three, we classify all numerical semigroups of homogeneous type into numerical semigroups with complete intersection tangent cones and the homogeneous ones which are not symmetric with Cohen–Macaulay tangent cones. We also study the behavior of the homogeneous property by gluing and shiftings to construct large families of homogeneous numerical semigroups with Cohen–Macaulay tangent cones. In particular we show that these properties fulfill asymptotically in the shifting classes. Several explicit examples are provided along the paper to illustrate the property.

Keywords

Numerical semigroup rings Tangent cones Betti numbers 

References

  1. 1.
    Arslan, F., Mete, P., Şahin, M.: Gluing and Hilbert functions of monomial curves. Proc. Am. Math. Soc. 137, 2225–2232 (2009)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Arslan, F., Mete, P.: Hilbert functions of Gorenstein monomial curves. Proc. Am. Math. Soc. 135, 1993–2002 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bresinsky, H.: Symmetric semigroups of integers generated by four elements. Manuscr. Math. 17, 205–219 (1975)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cortadellas Benítez, T., Jafari, R., Zarzuela Armengou, S.: On the Apéry sets of monomial curves. Semigroup Forum 86, 289–320 (2013)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    D’Anna, M., Micale, V., Sammartano, A.: When the associated graded ring of a semigroup ring is a complete intersection. J. Pure Appl. Agebra 217, 1007–1017 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-1-0—a computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2016)
  7. 7.
    Delgado, M., García-Sánchez, P.A., Morais, J.: NumericalSgps, a GAP package for numerical semigroups, 1.0.1. http://www.gap-system.org/Packages/numericalsgps.html (2015)
  8. 8.
    Garcia, A.: Cohen-Macaulayness of the associated graded of a semigroup ring. Commun. Algebra 10, 393–415 (1982)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    García-Sánchez, P.A., Rosales, J.C.: Numerical Semigroups. Developments in Mathematics, vol. 20. Springer, New York (2009)MATHGoogle Scholar
  10. 10.
    Gimenez, P., Sengupta, I., Srinivasan, H.: Minimal graded free resolutions for monomial curves defined by arithmetic sequences. J. Algebra 388, 294–310 (2013)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Herzog, J.: Generators and relations of abelian semigroup rings. Manuscr. Math. 3, 175–193 (1970)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Herzog, J.: When is a regular sequence super regular? Nagoya Math. J. 83, 183–195 (1981)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics, vol. 260. Springer, London (2011)CrossRefMATHGoogle Scholar
  14. 14.
    Herzog, J., Rossi, M.E., Valla, G.: On the depth of the symmetric algebra. Trans. Am. Math. Soc. 296(2), 577–606 (1986)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Herzog, J., Stamate, D.I.: On the defining equations of the tangent cone of a numerical semigroup ring. J. Algebra 418, 8–28 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Jafari, R., Zarzuela Armengou, S.: On monomial curves obtained by gluing, Semigroup Forum 88, 397–416 (2014)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Jayanthan, A.V., Srinivasan, H.: Periodic occurence of complete intersection monomial curves. Proc. Am. Math. Soc. 141, 4199–4208 (2013)CrossRefMATHGoogle Scholar
  18. 18.
    Katsabekis, A., Ojeda, I.: An indispensable classification of monomial curves in \({\mathbb{A}}^4(k)\). Pac. J. Math. 268(1), 95–116 (2014)CrossRefMATHGoogle Scholar
  19. 19.
    Komeda, J.: On the existence of Weierstrass points with a certain semigroup generated by 4 elements. Tsukuba J. Math. 6(2), 237–270 (1982)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Marzullo, A.: On the periodicity of the first Betti number of the semigroup rings under translations. J. Ramanujan Math. Soc. 28, 195–212 (2013)MathSciNetMATHGoogle Scholar
  21. 21.
    Matthews, G.L.: On integers nonrepresentable by a generalized arithmetic progression. Integers 5(2), A12 (2005)MathSciNetMATHGoogle Scholar
  22. 22.
    Peeva, I., Sturmfels, B.: Generic lattice ideals. J. Am. Math. Soc. 11, 363–373 (1998)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Reyes, E., Villarreal, R.H., Zárate, L.: A note on affine toric varieties. Linear Algebra Appl. 318, 173–179 (2000)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Robbiano, L.: Coni tangenti a singolarità razionali, Curve algebriche. Istituto di Analisi Globale, Firenze (1981)Google Scholar
  25. 25.
    Robbiano, L., Valla, G.: On the equations defining tangent cones. Math. Proc. Camb. Philos. Soc. 88(2), 281–297 (1980)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Rosales, J.C.: On presentations of subsemigroups of \({\mathbb{N}}^n\). Semigroup Forum 55, 152–159 (1997)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Rosales, J.C.: Numerical semigroups with Apéry sets of unique expression. J. Algebra 226, 479–487 (2000)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Rossi, M.E., Valla, G.: A conjecture of J. Sally. Commun. Algebra 24(13), 4249–4261 (1996)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Rossi, M.E., Sharifan, L.: Minimal free resolution of a finitely generated module over a regular local ring. J. Algebra 322, 3693–3712 (2009)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Sally, J.D.: Stretched Gorenstein rings. J. Lond. Math. Soc. 20(2), 19–26 (1979)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Selmer, E.S.: On the linear Diophantine problem of Frobenius. J. Reine Angew. Math. 239(294), 1–17 (1977)MathSciNetMATHGoogle Scholar
  32. 32.
    Shen, Y.H.: Tangent cone of numerical semigroup rings of embedding dimension three. Commun. Algebra 39, 1922–1940 (2011)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Sharifan, L., Zaare-Nahandi, R.: Minimal free resolution of the associated graded ring of monomial curves of generalized arithmetic sequences. J. Pure Appl. Algebra 213, 360–369 (2009)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Stamate, D.I.: Asymptotic properties in the shifted family of a numerical semigroup with few generators. Semigroup Forum 93, 225–246 (2016)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Vu, T.: Periodicity of Betti numbers of monomial curves. J. Algebra 418, 66–90 (2014)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mosaheb Institute of MathematicsKharazmi UniverstityTehranIran
  2. 2.School of MathematicsInstitute for Research in Fundamental Sciences (IPM)TehranIran
  3. 3.Departament de Matemàtiques i InformàticaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations