Advertisement

Semigroup Forum

, Volume 96, Issue 2, pp 348–356 | Cite as

On pseudo-amenability of commutative semigroup algebras and their second duals

  • M. Soroushmehr
  • M. Rostami
  • M. Essmaili
Research Article
  • 81 Downloads

Abstract

In this paper, we first characterize pseudo-amenability of semigroup algebras \(\ell ^1(S),\) for a certain class of commutative semigroups S,  the so-called archimedean semigroups. We show that for an archimedean semigroup S,  pseudo-amenability, amenability and approximate amenability of \(\ell ^1(S)\) are equivalent. Then for a commutative semigroup S,  we show that pseudo-amenability of \(\ell ^{1}(S)\) implies that S is a Clifford semigroup. Finally, we give some results on pseudo-amenability and approximate amenability of the second dual of a certain class of commutative semigroup algebras \(\ell ^1(S)\).

Keywords

Pseudo-amenability Approximate amenability Archimedean semigroup Clifford semigroup Commutative semigroup Semigroup algebra 

Notes

Acknowledgements

The authors thank the referee for his/her invaluable comments and suggestions. The first author was supported by Grant No. 95004213 from Iran National Science Foundation which is gratefully acknowledged.

References

  1. 1.
    Choi, Y., Ghahramani, F., Zhang, Y.: Approximate and pseudo-amenability of various classes of Banach algebras. J. Funct. Anal. 256, 3158–3191 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Clifford, A.H., Preston, G.B.: The algebraic theory of semigroups I. In: Math. Surveys No. 7. American Mathematical Society, Providence (1967)Google Scholar
  3. 3.
    Dales, H.G.: Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, New Series, 24. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (2000)Google Scholar
  4. 4.
    Dales, H.G., Lau, A.T., Strauss, D.: Banach algebras on semigroups and their compactifications. Mem. Am. Math. Soc. 205, 1–165 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Dales, H.G., Loy, R.J.: Approximate Amenability of Semigroup Algebras and Segal Algebras. Dissertationes Math. (Rozprawy Mat.), vol. 474 (2010)Google Scholar
  6. 6.
    Duncan, J., Paterson, A.L.T.: Amenability for discrete convolution semigroup algebras. Math. Scand. 66, 141–146 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Essmaili, M., Rostami, M., Medghalchi, A.R.: Pseudo-contractibility and pseudo-amenability of certain semigroup algebars. Archiv. der Math. 97, 167–177 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Essmaili, M., Rostami, M., Pourabbas, A.: Pseudo-amenability of certain semigroup algebars. Semigroup Forum 82, 478–484 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ghahramani, F., Loy, R.J.: Generalized notions of amenability. J. Funct. Anal. 208, 229–260 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ghahramani, F., Stokke, R.: Approximate and pseudo-amenability of the Fourier algebra. Indiana Univ. Math. J. 56(2), 909–930 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ghahramani, F., Zhang, Y.: Pseudo-amenable and pseudo-contractible Banach algebras. Math. Proc. Camb. Philos. Soc. 142, 111–123 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ghandahari, M., Hatami, H., Spronk, N.: Amenability constant for semilattice algebras. Semigroup Forum 79, 279–297 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gheorghe, F., Zhang, Y.: A note on approximate amenability of semigroup algebras. Semigroup Forum 79, 349–354 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Grillet, A.P.: Semigroups: An Introduction to the Structure Theory. Dekker, Madison (1995)zbMATHGoogle Scholar
  15. 15.
    Hindman, N., Strauss, D.: Algebra in the Stone-Cech Compactification. Expositions in Mathematics 27. de Gruyter, Berlin (1998)CrossRefzbMATHGoogle Scholar
  16. 16.
    Paterson, A.L.T.: Amenability, Mathematical Surveys and Monographs, 29. American Mathematical Society, Providence (1988)Google Scholar
  17. 17.
    Rostami, M., Pourabbas, A., Essmaili, M.: Approximate amenability of certain inverse semigroup algebars. Acta. Math. Sci. 33, 565–577 (2013)CrossRefzbMATHGoogle Scholar
  18. 18.
    Sadr, M.M., Pourabbas, A.: Approximate amenability of Banach category algebras with application to semigroup algebras. Semigroup Forum 79, 55–64 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Mosaheb Institue of MathematicsKharazmi UniversityTehranIran
  2. 2.Faculty of Mathematical and Computer ScienceAmirkabir University of TechnologyTehranIran
  3. 3.Faculty of Mathematical and Computer SciencesKharazmi UniversityTehranIran

Personalised recommendations