Abstract
Let \(c :\mathbb {R}\rightarrow \mathbb {C}\) be a bounded Lipschitz continuous function which takes values in a sector. We consider the divergence form operator \(A = - \frac{d}{dx} \, c \, \frac{d}{dx}\) in \(L_2(\mathbb {R})\). We characterize for which \(p \in [1,\infty )\) the semigroup generated by \(-A\) extends consistently to a contraction \(C_0\)-semigroup on \(L_p(\mathbb {R})\) and for those \(p\) we characterize when \(C_c^\infty (\mathbb {R})\) is a core for the generator in \(L_p(\mathbb {R})\).
Similar content being viewed by others
References
Agmon, S.: Lectures on Elliptic Boundary Value Problems. AMS Chelsea Publishing, Providence (2010)
Arendt, W., ter Elst, A.F.M.: Sectorial forms and degenerate differential operators. J. Oper. Theory 67, 33–72 (2012)
Auscher, P., Barthélemy, L., Bénilan, P., Ouhabaz, E.M.: Absence de la \(L^\infty \)-contractivité pour les semi-groupes associés aux opérateurs elliptiques complexes sous forme divergence. Potential Anal. 12, 160–189 (2000)
Auscher, P., McIntosh, A., Tchamitchian, P.: Heat kernels of second order complex elliptic operators and their applications. J. Funct. Anal. 152, 22–73 (1998)
Campiti, M., Metafune, G., Pallara, D.: Degenerate self-adjoint evolution equations on the unit interval. Semigroup Forum 57, 1–36 (1998)
Cialdea, A., Maz’ya, V.: Criterion for the \(L^p\)-dissipativity of second order differential operators with complex coefficients. J. Math. Pures Appl. 84(9), 1067–1100 (2005)
Davies, E.B.: \(L^1\) properties of second order elliptic operators. Bull. Lond. Math. Soc. 17, 417–436 (1985)
ter Elst, A.F.M., Robinson, D.W., Sikora, A.: Flows and invariance for elliptic operators. J. Aust. Math. Soc. 90, 317–339 (2011)
Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wissenschaften, vol. 224, 2nd edn. Springer, Berlin (1983)
Hamza, M. M.: Détermination des formes de Dirichlet sur \(\mathbb{R}^n\). Thèse 3e cycle, Orsay (1975)
Kato, T.: Perturbation theory for linear operators. Grundlehren der Mathematischen Wissenschaften, vol. 132, 2nd edn. Springer, Berlin (1980)
Kato, T.: Remarks on the selfadjointness and related problems for differential operators. Spectral Theory of Differential Operators. North-Holland Mathematics Studies, vol. 55, pp. 253–266. North-Holland, Amsterdam (1981)
Liskevich, V.: Essential self-adjointness of semibounded elliptic operators of second order. Ukrain. Mat. Zh. 41 (1989), 710–716. Translation in Ukrainian Math. J. 41(5), 615–619 (1989)
Lumer, G., Phillips, R.S.: Dissipative operators in a Banach space. Pac. J. Math. 11, 679–698 (1961)
Metafune, G., Pallara, D., Rabier, P.J., Schnaubelt, R.: Uniqueness for elliptic operators on \(L^p(\mathbb{R}^N)\) with unbounded coefficients. Forum Math. 22, 583–601 (2010)
Ouhabaz, E.-M.: Analysis of Heat Equations on Domains. London Mathematical Society Monographs Series, vol. 31. Princeton University Press, Princeton (2005)
Röckner, M., Wielens, N.: Dirichlet forms - closability and change of speed measure. Infinite-Dimensional Analysis and Stochastic Processes (Bielefeld, 1983). Research Notes in Mathematics, vol. 124, pp. 119–144. Pitman, Boston (1985)
Voigt, J.: One-parameter semigroups acting simultaneously on different \(L_p\)-spaces. Bull. Soc. R. Sci. Liège 61, 465–470 (1992)
Wong-Dzung, B.: \(L^p\)-Theory of degenerate-elliptic and parabolic operators of second order. Proc. R. Soc. Edinburgh Sect. A 95, 95–113 (1983)
Acknowledgments
We wish to thank the referee for his comments and for suggesting that the ‘if’-part in Proposition 1.4 is valid for merely an \(L_\infty \)-coefficient. This is now in Proposition 1.2. Part of this work is supported by the Marsden Fund Council from Government funding, administered by the Royal Society of New Zealand.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Markus Haase.
Rights and permissions
About this article
Cite this article
Do, T.D., ter Elst, A.F.M. One-dimensional degenerate elliptic operators on \(L_{\!p}\)-spaces with complex coefficients. Semigroup Forum 92, 559–586 (2016). https://doi.org/10.1007/s00233-015-9721-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00233-015-9721-5