Skip to main content
Log in

One-dimensional degenerate elliptic operators on \(L_{\!p}\)-spaces with complex coefficients

  • Research Article
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

Let \(c :\mathbb {R}\rightarrow \mathbb {C}\) be a bounded Lipschitz continuous function which takes values in a sector. We consider the divergence form operator \(A = - \frac{d}{dx} \, c \, \frac{d}{dx}\) in \(L_2(\mathbb {R})\). We characterize for which \(p \in [1,\infty )\) the semigroup generated by \(-A\) extends consistently to a contraction \(C_0\)-semigroup on \(L_p(\mathbb {R})\) and for those \(p\) we characterize when \(C_c^\infty (\mathbb {R})\) is a core for the generator in \(L_p(\mathbb {R})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: Lectures on Elliptic Boundary Value Problems. AMS Chelsea Publishing, Providence (2010)

    MATH  Google Scholar 

  2. Arendt, W., ter Elst, A.F.M.: Sectorial forms and degenerate differential operators. J. Oper. Theory 67, 33–72 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Auscher, P., Barthélemy, L., Bénilan, P., Ouhabaz, E.M.: Absence de la \(L^\infty \)-contractivité pour les semi-groupes associés aux opérateurs elliptiques complexes sous forme divergence. Potential Anal. 12, 160–189 (2000)

    Article  Google Scholar 

  4. Auscher, P., McIntosh, A., Tchamitchian, P.: Heat kernels of second order complex elliptic operators and their applications. J. Funct. Anal. 152, 22–73 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Campiti, M., Metafune, G., Pallara, D.: Degenerate self-adjoint evolution equations on the unit interval. Semigroup Forum 57, 1–36 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cialdea, A., Maz’ya, V.: Criterion for the \(L^p\)-dissipativity of second order differential operators with complex coefficients. J. Math. Pures Appl. 84(9), 1067–1100 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Davies, E.B.: \(L^1\) properties of second order elliptic operators. Bull. Lond. Math. Soc. 17, 417–436 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. ter Elst, A.F.M., Robinson, D.W., Sikora, A.: Flows and invariance for elliptic operators. J. Aust. Math. Soc. 90, 317–339 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wissenschaften, vol. 224, 2nd edn. Springer, Berlin (1983)

    Google Scholar 

  10. Hamza, M. M.: Détermination des formes de Dirichlet sur \(\mathbb{R}^n\). Thèse 3e cycle, Orsay (1975)

  11. Kato, T.: Perturbation theory for linear operators. Grundlehren der Mathematischen Wissenschaften, vol. 132, 2nd edn. Springer, Berlin (1980)

    Google Scholar 

  12. Kato, T.: Remarks on the selfadjointness and related problems for differential operators. Spectral Theory of Differential Operators. North-Holland Mathematics Studies, vol. 55, pp. 253–266. North-Holland, Amsterdam (1981)

    Google Scholar 

  13. Liskevich, V.: Essential self-adjointness of semibounded elliptic operators of second order. Ukrain. Mat. Zh. 41 (1989), 710–716. Translation in Ukrainian Math. J. 41(5), 615–619 (1989)

  14. Lumer, G., Phillips, R.S.: Dissipative operators in a Banach space. Pac. J. Math. 11, 679–698 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  15. Metafune, G., Pallara, D., Rabier, P.J., Schnaubelt, R.: Uniqueness for elliptic operators on \(L^p(\mathbb{R}^N)\) with unbounded coefficients. Forum Math. 22, 583–601 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ouhabaz, E.-M.: Analysis of Heat Equations on Domains. London Mathematical Society Monographs Series, vol. 31. Princeton University Press, Princeton (2005)

    Google Scholar 

  17. Röckner, M., Wielens, N.: Dirichlet forms - closability and change of speed measure. Infinite-Dimensional Analysis and Stochastic Processes (Bielefeld, 1983). Research Notes in Mathematics, vol. 124, pp. 119–144. Pitman, Boston (1985)

    Google Scholar 

  18. Voigt, J.: One-parameter semigroups acting simultaneously on different \(L_p\)-spaces. Bull. Soc. R. Sci. Liège 61, 465–470 (1992)

    MathSciNet  MATH  Google Scholar 

  19. Wong-Dzung, B.: \(L^p\)-Theory of degenerate-elliptic and parabolic operators of second order. Proc. R. Soc. Edinburgh Sect. A 95, 95–113 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We wish to thank the referee for his comments and for suggesting that the ‘if’-part in Proposition 1.4 is valid for merely an \(L_\infty \)-coefficient. This is now in Proposition 1.2. Part of this work is supported by the Marsden Fund Council from Government funding, administered by the Royal Society of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tan Duc Do.

Additional information

Communicated by Markus Haase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, T.D., ter Elst, A.F.M. One-dimensional degenerate elliptic operators on \(L_{\!p}\)-spaces with complex coefficients. Semigroup Forum 92, 559–586 (2016). https://doi.org/10.1007/s00233-015-9721-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-015-9721-5

Keywords

Navigation