Abstract
Let X be a finite or infinite chain and let \({\mathcal{O}}(X)\) be the monoid of all endomorphisms of X. In this paper, we describe the largest regular subsemigroup of \({\mathcal{O}}(X)\) and Green’s relations on \({\mathcal{O}}(X)\). In fact, more generally, if Y is a nonempty subset of X and \({\mathcal{O}}(X,Y)\) is the subsemigroup of \({\mathcal{O}}(X)\) of all elements with range contained in Y, we characterize the largest regular subsemigroup of \({\mathcal{O}}(X,Y)\) and Green’s relations on \({\mathcal{O}}(X,Y)\). Moreover, for finite chains, we determine when two semigroups of the type \({\mathcal {O}}(X,Y)\) are isomorphic and calculate their ranks.
This is a preview of subscription content, access via your institution.
References
Adams, M.E., Gould, M.: Posets whose monoids of order-preserving maps are regular. Order 6, 195–201 (1989)
Aĭzenštat, A.Ya.: The defining relations of the endomorphism semigroup of a finite linearly ordered set. Sib. Mat. Zh. 3, 161–169 (1962) (Russian)
Aĭzenštat, A.Ya.: Homomorphisms of semigroups of endomorphisms of ordered sets. Uč. Zap.—Leningr. Pedagog. Inst. 238, 38–48 (1962) (Russian)
Aĭzenštat, A.Ya.: Regular semigroups of endomorphisms of ordered sets. Uč. Zap.—Leningr. Gos. Pedagog. Inst. 387, 3–11 (1968) (Russian)
Almeida, J., Volkov, M.V.: The gap between partial and full. Int. J. Algebra Comput. 8, 399–430 (1998)
Fernandes, V.H.: Semigroups of order-preserving mappings on a finite chain: a new class of divisors. Semigroup Forum 54, 230–236 (1997)
Fernandes, V.H.: Semigroups of order-preserving mappings on a finite chain: another class of divisors. Russ. Math. (Izv. VUZ) 3(478), 51–59 (2002) (Russian)
Fernandes, V.H., Sanwong, J.: On the rank of semigroups of transformations on a finite set with restricted range. Algebra Colloq. (to appear)
Fernandes, V.H., Volkov, M.V.: On divisors of semigroups of order-preserving mappings of a finite chain. Semigroup Forum 81, 551–554 (2010)
Fernandes, V.H., Jesus, M.M., Maltcev, V., Mitchell, J.D.: Endomorphisms of the semigroup of order-preserving mappings. Semigroup Forum 81, 277–285 (2010)
Gomes, G.M.S., Howie, J.M.: On the ranks of certain semigroups of order-preserving transformations. Semigroup Forum 45(3), 272–282 (1992)
Hall, M. Jr.: Combinatorial Theory. Wiley, New York (1967)
Higgins, P.M.: Divisors of semigroups of order-preserving mappings on a finite chain. Int. J. Algebra Comput. 5, 725–742 (1995)
Howie, J.M.: Products of idempotents in certain semigroups of transformations. Proc. Edinb. Math. Soc. 17, 223–236 (1971)
Howie, J.M.: Fundamentals of Semigroup Theory. Oxford University Press, Oxford (1995)
Jitjankarn, P.: Isomorphism Theorems for Semigroups of Order-preserving Full Transformations (2012). arXiv:1202.2977v1 [math.RA]
Kemprasit, Y., Changphas, T.: Regular order-preserving transformation semigroups. Bull. Aust. Math. Soc. 62(3), 511–524 (2000)
Kim, V.I., Kozhukhov, I.B.: Regularity conditions for semigroups of isotone transformations of countable chains. Fundam. Prikl. Mat. 12(8), 97–104 (2006) (Russian). Translation in J. Math. Sci. (N.Y.) 152(2), 203–208 (2008)
Mendes-Gonçalves, S., Sullivan, R.P.: The ideal structure of semigroups of transformations with restricted range. Bull. Aust. Math. Soc. 83, 289–300 (2011)
Mora, W., Kemprasit, Y.: Regular elements of some order-preserving transformation semigroups. Int. J. Algebra 4(13–16), 631–641 (2010)
Nenthein, S., Youngkhong, P., Kemprasit, Y.: Regular elements of some transformation semigroups. Pure Math. Appl. 16(3), 307–314 (2005)
Repnitskiĭ, V.B., Vernitskii, A.: Semigroups of order preserving mappings. Commun. Algebra 28(8), 3635–3641 (2000)
Repnitskiĭ, V.B., Volkov, M.V.: The finite basis problem for the pseudovariety \(\mathcal{O}\). Proc. R. Soc. Edinb., Sect. A, Math. 128, 661–669 (1998)
Sanwong, J., Sommanee, W.: Regularity and Green’s relations on a semigroup of transformations with restricted range. Int. J. Math. Math. Sci. (2008). Art. ID 794013, 11 pp.
Sanwong, J., Singha, B., Sullivan, R.P.: Maximal and minimal congruences on some semigroups. Acta Math. Sin. Engl. Ser. 25(3), 455–466 (2009)
Sullivan, R.P.: Semigroups of linear transformations with restricted range. Bull. Aust. Math. Soc. 77, 441–453 (2008)
Symons, J.S.V.: Some results concerning a transformation semigroup. J. Aust. Math. Soc. A 19, 413–425 (1975)
Vernitskii, A., Volkov, M.V.: A proof and generalisation of Higgins’ division theorem for semigroups of order-preserving mappings. Izv. Math. Izv. Vuzov Matematika 1, 38–44 (1995) (Russian)
Acknowledgements
This research was mainly carried out during the visit of the second and fourth authors to Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa and Centro de Álgebra da Universidade de Lisboa between August and October 2011.
The authors would like to thank Cláudia and Francisco Coelho for their help in reviewing the text of this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Jean-Eric Pin.
Dedicated to the memory of John M. Howie.
Vítor H. Fernandes work was developed within the research activities of Centro de Álgebra da Universidade de Lisboa, FCT´s project PEst-OE/MAT/UI0143/2013, and of Departamento de Matemática da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa.
Teresa M. Quinteiro work was developed within the research activities of Centro de Álgebra da Universidade de Lisboa, FCT´s project PEst-OE/MAT/UI0143/2013, and of Instituto Superior de Engenharia de Lisboa.
Rights and permissions
About this article
Cite this article
Fernandes, V.H., Honyam, P., Quinteiro, T.M. et al. On semigroups of endomorphisms of a chain with restricted range. Semigroup Forum 89, 77–104 (2014). https://doi.org/10.1007/s00233-013-9548-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00233-013-9548-x
Keywords
- Transformations
- Order-preserving
- Restricted range
- Rank