Skip to main content
Log in

On some homotopical and homological properties of monoid presentations

  • Research article
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

If a monoid S is given by some finite complete presentation ℘, we construct inductively a chain of CW-complexes

$$\mathcal{D}\subset \Delta_{2}\subset(\mathcal{D},\mathbf{p}_{1})\subset\Delta_{3}\subset \cdots\subset \Delta_{n-1}\subset (\mathcal{D},\mathbf{p}_{1},\ldots,\mathbf{p}_{n-2})\subset \Delta_{n},$$

such that Δ n has dimension n, for every 2≤mn, the m-skeleton of Δ n is Δ m , and p m are critical (m+1)-cells with 1≤mn−2. For every 2≤mn−1, the following is an exact sequence of (ℤS,ℤS)-bimodules

$$0\rightarrow H_{m}(\mathcal{D},\mathbf{p}_{1},\ldots,\mathbf{p}_{m-1})\stackrel{\Phi }{\longrightarrow}\mathbb{Z}S.\mathbf{p}_{m-1}.\mathbb{Z}S\stackrel{\nu}{\longrightarrow }H_{m-1}(\mathcal{D},\mathbf{p}_{1},\ldots,\mathbf{p}_{m-2})\rightarrow 0,$$

where \((\mathcal{D},\mathbf{p}_{1},\ldots,\mathbf{p}_{m-2})=\mathcal{D}\) if m=2. We then use these sequences to obtain a free finitely generated bimodule partial resolution of ℤS. Also we show that for groups properties FDT and FHT coincide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cremanns, R., Otto, F.: For groups the property of having finite derivation type is equivalent to the homological finiteness condition FP3. J. Symb. Comput. 22, 155–177 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun. Assoc. Comput. Mach. 22, 465–476 (1979)

    MATH  MathSciNet  Google Scholar 

  3. Gilbert, N.D.: Monoid presentations and associated groupoids. Int. J. Algebra Comput. 8, 141–152 (1998)

    Article  MATH  Google Scholar 

  4. Guba, V., Sapir, M.: Diagram groups. Mem. Am. Math. Soc. 620, 1–117 (1997)

    MathSciNet  Google Scholar 

  5. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  6. Ivanov, S.V.: Relation modules and relation bimodules of groups, semigroups and associative algebras. Int. J. Algebra Comput. 1, 89–114 (1991)

    Article  MATH  Google Scholar 

  7. Kobayashi, Y.: Gröbner bases of associative algebras and the Hochschild cohomology. Trans. Am. Math. Soc. 357(3), 1095–1124 (2004)

    Article  Google Scholar 

  8. Kobayashi, Y., Otto, F.: Some exact sequences for the homotopy (bi-)module of a monoid. Int. J. Algebra Comput. 12, 247–284 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kobayashi, Y., Otto, F.: For finitely presented monoids the homological finiteness conditions FHT and bi-FP 3 coincide. J. Algebra 264, 327–341 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lundell, A.T., Weingram, S.: The Topology of CW Complexes. Van Nostrand-Reinhold, London (1969)

    MATH  Google Scholar 

  11. Maunder, C.R.F.: Algebraic Topology. Van Nostrand-Reinhold, London (1970)

    MATH  Google Scholar 

  12. McGlashan, S.: Finiteness conditions for rewriting systems. Ph.D. Thesis, University of Glasgow (2002)

  13. McGlashan, S., Pasku, E., Pride, S.J.: Finiteness conditions for rewriting systems. Int. J. Algebra Comput. 15(1), 175–205 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Munkers, J.R.: Elements of Algebraic Topology. Addison-Wesley, Reading (1984)

    Google Scholar 

  15. Pasku, E.: Finiteness conditions for monoids and small categories. Ph.D. Thesis, University of Glasgow (2006)

  16. Pride, S.J.: Low-dimensional homotopy theory for monoids. Int. J. Algebra Comput. 5, 631–649 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pride, S.J.: Low-dimensional homotopy theory for monoids II: groups. Glas. J. Math. 41, 1–11 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pride, S.J., Otto, F.: On higher order homological finiteness of rewriting systems. J. Pure Appl. Algebra 200, 149–161 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pride, S.J., Wang, J.: Rewriting systems, finiteness conditions, and associated functions. In: Birget, J.C., Margolis, S., Meakin, J., Sapir, M. (eds.) Algorithmic Problems in Groups and Semigroups, pp. 195–216. Birkhäuser, Boston (2000)

    Google Scholar 

  20. Rotman, J.J.: Notes on Homological Algebra. Van Nostrand-Reinhold, New York (1970)

    Google Scholar 

  21. Schubert, H.: Topology. MacDonald Technical & Scientific, London (1968)

    Google Scholar 

  22. Squier, C.C.: Word problems and a homological finiteness condition for monoids. J. Pure Appl. Algebra 49, 201–216 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  23. Squier, C.C., Otto, F., Kobayashi, Y.: A finiteness condition for rewriting systems. Theor. Comput. Sci. 131, 271–294 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elton Pasku.

Additional information

Communicated by Steve Pride.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasku, E. On some homotopical and homological properties of monoid presentations. Semigroup Forum 76, 427–468 (2008). https://doi.org/10.1007/s00233-007-9037-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-007-9037-1

Keywords

Navigation