Skip to main content
Log in

Red Blood Cells of a Transgenic Mouse Expressing High Levels of Human Hemoglobin S Exhibit Deoxy-stimulated Cation Flux

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

+

and Na+ transport in RBCs from control mice (C57Bl/6J) and a transgenic (αHβSMDD]) mouse line that expresses high levels of human αH and βS-chains and has a small percent dense cells but does not exhibit anemia. In transgenic mouse RBCs (n= 5) under oxygenated conditions, K+ efflux was 0.22 ± 0.01 mmol/L cell × min and Na+ influx was 0.17 ± 0.02 mmol/L cell × min. Both fluxes were stimulated by 10 min deoxygenation in transgenic but not in control mice. The deoxy-stimulated K+ efflux from transgenic mouse RBCs was about 55% inhibited by 5 nm charybdotoxin (CTX), a blocker of the calcium activated K+-channel. To compare the fluxes between human and mouse RBCs, we measured the area of mouse RBCs and normalized values to area per liter of cells. The deoxy-simulated CTX-sensitive K+ efflux was larger than the CTX-sensitive K+ efflux observed in RBCs from SS patients. These results suggest that in transgenic mice, deoxygenation increases cytosolic Ca2+ to levels which open Ca2+-activated K+ channels. The presence of these channels was confirmed in both control and transgenic mice by clamping intracellular Ca2+ at 10 μm with the ionophore A23187 and measuring Ca2+-activated K+ efflux. Both types of mouse had similar maximal rates of CTX-sensitive, Ca2+-activated K+ efflux that were similar to those in human SS cells. The capacity of the mouse red cell membrane to regulate cytosolic Ca2+ levels was examined by measurements of the maximal rate of calmodulin activated Ca2+-ATPase activity. This activity was 3-fold greater than that observed in human RBCs thus indicating that mouse RBC membranes have more capacity to regulate cytosolic Ca2+ levels.

In summary, transgenic mouse RBCs exhibit larger values of deoxy-stimulated K+ efflux and Na+ influx when compared to human SS cells. They have a similar Ca2+-activated K+ channel activity to human SS cells while expressing a very high Ca2+ pump activity. These properties may contribute to the smaller percent of very dense cells and to the lack of adult anemia in this animal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Author information

Authors and Affiliations

Authors

Additional information

Received: 23 October/Revised: 15 May 1997

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero, J., Fabry, M., Suzuka, S. et al. Red Blood Cells of a Transgenic Mouse Expressing High Levels of Human Hemoglobin S Exhibit Deoxy-stimulated Cation Flux . J. Membrane Biol. 159 , 187 –196 (1997). https://doi.org/10.1007/s002329900282

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002329900282

Navigation