Skip to main content
Log in

Abundance of the Membrane Proteome in Yeast Cells Lacking Spc1, a Non-catalytic Subunit of the Signal Peptidase Complex

  • Brief Report
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The signal peptidase complex (SPC) mediates processing of signal peptides of secretory precursors. But, recent studies show that the eukaryotic SPC also cleaves internal transmembrane segments of some membrane proteins, and its non-catalytic subunit, Spc1/SPCS1 plays a critical role in this process. To assess the impact of Spc1 on membrane proteostasis, we carried out quantitative proteomics of yeast cells with and without Spc1. Our data show that the abundance of the membrane proteome in yeast cells lacking Spc1 is in general reduced compared to that in wild-type cells, implicating its role in controlling the cellular levels of membrane proteins.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data Availability

No datasets were generated or analyzed during the current study.

References

  • Almagro Armenteros JJ, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37:420–423

    Article  CAS  PubMed  Google Scholar 

  • Alzahrani N, Wu MJ, Shanmugam S, Yi M (2020) Delayed by design: role of suboptimal signal peptidase processing of viral structural protein precursors in Flaviviridae virus assembly. Viruses 12:1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avci D, Fuchs S, Schrul B, Fukumori A, Breker M, Frumkin I, Chen CY, Biniossek ML, Kremmer E, Schilling O, Steiner H, Schuldiner M, Lemberg MK (2014) The yeast ER-intramembrane protease Ypf1 refines nutrient sensing by regulating transporter abundance. Mol Cell 56:630–640

    Article  CAS  PubMed  Google Scholar 

  • Bachmair A, Finley D, Varshavsky A (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234:179–186

    Article  CAS  PubMed  Google Scholar 

  • Berninsone P, Miret JJ, Hirschberg CB (1994) The Golgi guanosine diphosphatase is required for transport of GDP-mannose into the lumen of Saccharomyces cerevisiae Golgi vesicles. J Biol Chem 269:207–211

    Article  CAS  PubMed  Google Scholar 

  • Christianson JC, Jarosch E, Sommer T (2023) Mechanisms of substrate processing during ER-associated protein degradation. Nat Rev Mol Cell Biol 24:777–796

    Article  CAS  PubMed  Google Scholar 

  • Donella-Deana A, Ostojic S, Pinna LA, Barbaric S (1993) Specific dephosphorylation of phosphopeptides by the yeast alkaline phosphatase encoded by PHO8 gene. Biochim Biophys Acta 1177:221–228

    Article  CAS  PubMed  Google Scholar 

  • Falk MM, Kumar NM, Gilula NB (1994) Membrane insertion of gap junction connexins: polytopic channel forming membrane proteins. J Cell Biol 127:343–355

    Article  CAS  PubMed  Google Scholar 

  • Fang H, Mullins C, Green N (1997) In addition to SEC11, a newly identified gene, SPC3, is essential for signal peptidase activity in the yeast endoplasmic reticulum. J Biol Chem 272:13152–13158

    Article  CAS  PubMed  Google Scholar 

  • Gowen BG, Chim B, Marceau CD, Greene TT, Burr P, Gonzalez JR, Hesser CR, Dietzen PA, Russell T, Iannello A, Coscoy L, Sentman CL, Carette JE, Muljo SA, Raulet DH (2015) A forward genetic screen reveals novel independent regulators of ULBP1, an activating ligand for natural killer cells. Elife 4:e08474

    Article  PubMed  PubMed Central  Google Scholar 

  • Krshnan L, van de Weijer ML, Carvalho P (2022) Endoplasmic reticulum-associated protein degradation. Cold Spring Harb Perspect Biol 14:a041247

    Article  CAS  PubMed  Google Scholar 

  • Lara P, Tellgren-Roth A, Behesti H, Horn Z, Schiller N, Enquist K, Cammenberg M, Liljenstrom A, Hatten ME, von Heijne G, Nilsson I (2019) Murine astrotactins 1 and 2 have a similar membrane topology and mature via endoproteolytic cleavage catalyzed by a signal peptidase. J Biol Chem 294:4538–4545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liaci AM, Steigenberger B, Telles de Souza PC, Tamara S, Grollers-Mulderij M, Ogrissek P, Marrink SJ, Scheltema RA, Forster F (2021) Structure of the human signal peptidase complex reveals the determinants for signal peptide cleavage. Mol Cell 81(3934–48):e11

    Google Scholar 

  • Longtine MS, McKenzie A 3rd, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961

    Article  CAS  PubMed  Google Scholar 

  • Lussier M, Sdicu AM, Bussereau F, Jacquet M, Bussey H (1997) The Ktr1p, Ktr3p, and Kre2p/Mnt1p mannosyltransferases participate in the elaboration of yeast O- and N-linked carbohydrate chains. J Biol Chem 272:15527–15531

    Article  CAS  PubMed  Google Scholar 

  • Mallet L, Bussereau F, Jacquet M (1994) Nucleotide sequence analysis of an 11.7 kb fragment of yeast chromosome II including BEM1, a new gene of the WD-40 repeat family and a new member of the KRE2/MNT1 family. Yeast 10:819–831

    Article  CAS  PubMed  Google Scholar 

  • Marini AM, Soussi-Boudekou S, Vissers S, Andre B (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 17:4282–4293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullins C, Meyer HA, Hartmann E, Green N, Fang H (1996) Structurally related Spc1p and Spc2p of yeast signal peptidase complex are functionally distinct. J Biol Chem 271:29094–29099

    Article  CAS  PubMed  Google Scholar 

  • Navarre C, Ghislain M, Leterme S, Ferroud C, Dufour JP, Goffeau A (1992) Purification and complete sequence of a small proteolipid associated with the plasma membrane H(+)-ATPase of Saccharomyces cerevisiae. J Biol Chem 267:6425–6428

    Article  CAS  PubMed  Google Scholar 

  • Otte S, Belden WJ, Heidtman M, Liu J, Jensen ON, Barlowe C (2001) Erv41p and Erv46p: new components of COPII vesicles involved in transport between the ER and Golgi complex. J Cell Biol 152:503–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Printsev I, Curiel D, Carraway KL 3rd (2017) Membrane protein quantity control at the endoplasmic reticulum. J Membr Biol 250:379–392

    Article  CAS  PubMed  Google Scholar 

  • Reggiori F, Pelham HR (2001) Sorting of proteins into multivesicular bodies: ubiquitin-dependent and -independent targeting. EMBO J 20:5176–5186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–774

    Article  CAS  PubMed  Google Scholar 

  • Tsirigos KD, Peters C, Shu N, Kall L, Elofsson A (2015) The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res 43:W401–W407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yim C, Chung Y, Kim J, Nilsson I, Kim JS, Kim H (2021) Spc1 regulates the signal peptidase-mediated processing of membrane proteins. J Cell Sci 134:jcs258936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanotti A, Coelho JPL, Kaylani D, Singh G, Tauber M, Hitzenberger M, Avci D, Zacharias M, Russell RB, Lemberg MK, Feige MJ (2022) The human signal peptidase complex acts as a quality control enzyme for membrane proteins. Science 378:996–1000

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Miner JJ, Gorman MJ, Rausch K, Ramage H, White JP, Zuiani A, Zhang P, Fernandez E, Zhang Q, Dowd KA, Pierson TC, Cherry S, Diamond MS (2016) A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 535:164–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a grant from the National Research Foundation of Korea (NRF-2022R1A2C1010060) to Hyun Kim and supported by the Institute for Basic Science from the Ministry of Science and Information and Communications Technology of Korea (IBS-R008-D1) to Jeesoo Kim and Jong-Seo Kim.

Author information

Authors and Affiliations

Authors

Contributions

CY, YC and HK conceptualized research; CY, YC and SS performed experiments using yeast cells; JK and J-SK performed quantitative mass spectrometry and analyzed data; CY, YC and HK analyzed experimental data and wrote the paper; CY, YC, SS, JK, J-SK and HK read and edited the manuscript.

Corresponding author

Correspondence to Hyun Kim.

Ethics declarations

Conflict of interests

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 634 KB)

Supplementary file2 (DOCX 3023 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yim, C., Chung, Y., Son, S. et al. Abundance of the Membrane Proteome in Yeast Cells Lacking Spc1, a Non-catalytic Subunit of the Signal Peptidase Complex. J Membrane Biol (2024). https://doi.org/10.1007/s00232-024-00312-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00232-024-00312-5

Keywords

Navigation