Skip to main content
Log in

Role of Cholesterol and its Biosynthetic Precursors on Membrane Organization and Dynamics: A Fluorescence Approach

  • Brief Communication
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Cholesterol is the most representative sterol present in membranes of higher eukaryotes, and is the end product of a long and multistep biosynthetic pathway. Lathosterol and zymosterol are biosynthetic precursors of cholesterol in Kandutsch-Russell and Bloch pathways, respectively. Lathosterol differs with cholesterol merely in the position of the double bond in the sterol ring, whereas zymosterol differs with cholesterol in position and number of double bonds. In this work, we have monitored the effect of cholesterol and its biosynthetic precursors (lathosterol and zymosterol) on membrane organization and dynamics in fluid and gel phase membranes. Toward this goal, we have utilized two fluorescent membrane probes, DPH and its cationic derivative TMA-DPH. Our results using these probes show that cholesterol and its biosynthetic precursors (lathosterol and zymosterol) exhibit similar trend in maintaining membrane organization and dynamics (as reported by fluorescence anisotropy and apparent rotational correlation time), in fluid phase POPC membranes. Notably, although lathosterol and zymosterol show similar trend in maintaining membrane organization and dynamics, the corresponding change for cholesterol is different in gel phase DPPC membranes. These results demonstrate that the position and number of double bonds in sterols is an important determinant in maintaining membrane physical properties. Our results assume significance since accumulation of precursors of cholesterol have been reported to be associated with severe pathological conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CDPX2:

X-linked chondrodysplasia punctata 2

DMPC:

1,2-dimyristoyl-sn-glycero-3-phosphocholine

DPH:

1,6-diphenyl-1,3,5-hexatriene

DPPC:

1,2-dipalmitoyl-sn-glycero-3- phosphocholine

LUV:

large unilamellar vesicle

POPC:

1-palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine

TMA-DPH:

1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene

References

  • Arora A, Raghuraman H, Chattopadhyay A (2004) Influence of cholesterol and ergosterol on membrane dynamics: a fluorescence approach. Biochem Biophys Res Commun 318:920–926

    Article  CAS  PubMed  Google Scholar 

  • Berring EE, Borrenpohl K, Fliesler SJ, Serfis AB (2005) A comparison of the behavior of cholesterol and selected derivatives in mixed sterol-phospholipid Langmuir monolayers: a fluorescence microscopy study. Chem Phys Lipids 136:1–12

    Article  CAS  PubMed  Google Scholar 

  • Bloch K (1965) The biological synthesis of cholesterol. Science 150:19–28

    Article  CAS  PubMed  Google Scholar 

  • Bloch KE (1983) Sterol structure and membrane function. CRC Crit Rev Biochem 14:47–92

    Article  CAS  PubMed  Google Scholar 

  • Brown AJ, Galea AM (2010) Cholesterol as an evolutionary response to living with oxygen. Evolution 64:2179–2183

    PubMed  Google Scholar 

  • Brunetti-Pierri N, Corso G, Rossi M, Ferrari P, Balli F, Rivasi F, Annunziata I, Ballabio A, Dello Russo A, Andria G, Parenti G (2002) Lathosterolosis, a novel multiple-malformation/mental retardation syndrome due to deficiency of 3β-hydroxysteroid-Δ5-desaturase. Am J Hum Genet 71:952–958

    Article  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay A, Paila YD (2007) Lipid-protein interactions, regulation and dysfunction of brain cholesterol. Biochem Biophys Res Commun 354:627–633

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri A, Chattopadhyay A (2011) Transbilayer organization of membrane cholesterol at low concentrations: implications in health and disease. Biochim Biophys Acta 1808:19–25

    Article  CAS  PubMed  Google Scholar 

  • Derry JMJ, Gormally E, Means GD, Zhao W, Meindl A, Kelley RI, Boyd Y, Herman GE (1999) Mutations in a Δ87 sterol isomerase in the tattered mouse and X-linked dominant chondrodysplasia punctata. Nat Genet 22:286–290

    Article  CAS  PubMed  Google Scholar 

  • Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438:578–580

    Article  CAS  PubMed  Google Scholar 

  • Ganguly S, Chattopadhyay A (2010) Cholesterol depletion mimics the effect of cytoskeletal destabilization on membrane dynamics of the serotonin1A receptor: a zFCS study. Biophys J 99:1397–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganguly S, Pucadyil TJ, Chattopadhyay A (2008) Actin cytoskeleton-dependent dynamics of the human serotonin1A receptor correlates with receptor signaling. Biophys J 95:451–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hąc-Wydro K, Wydro P, Flasiński M (2014) The comparison of zymosterol vs cholesterol membrane properties-the effect of zymosterol on lipid monolayers. Colloids Surf B Biointerfaces 123:524–532

    Article  PubMed  Google Scholar 

  • Haldar S, Kanaparthi RK, Samanta A, Chattopadhyay A (2012) Differential effect of cholesterol and its biosynthetic precursors on membrane dipole potential. Biophys J 102:1561–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho C, Stubbs CD (1992) Hydration at the membrane protein-lipid interface. Biophys J 63:897–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huster D, Scheidt HA, Arnold K, Herrmann A, Müller P (2005) Desmosterol may replace cholesterol in lipid membranes. Biophys J 88:1838–1844

    Article  CAS  PubMed  Google Scholar 

  • Jafurulla M, Rao BD, Sreedevi S, Ruysschaert J-M, Covey DF, Chattopadhyay A (2014) Stereospecific requirement of cholesterol in the function of the serotonin1A receptor. Biochim Biophys Acta 1838:158–163

    Article  CAS  PubMed  Google Scholar 

  • Kaiser RD, London E (1998) Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth. Biochemistry 37:8180–8190

    Article  CAS  PubMed  Google Scholar 

  • Kandutsch AA, Russell AE (1960) Preputial gland tumor sterols: III. A metabolic pathway from lanosterol to cholesterol. J Biol Chem 235:2256–2261

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa S, Hirata H (1992) Effects of alcohols on fluorescence anisotropies of diphenylhexatriene and its derivatives in bovine blood platelets: relationships of the depth-dependent change in membrane fluidity by alcohols with their effects on platelet aggregation and adenylate cyclase activity. Biochim Biophys Acta 1112:14–18

    Article  CAS  PubMed  Google Scholar 

  • Kumar GA, Chattopadhyay A (2016) Cholesterol: an evergreen molecule in biology. Biomed Spectrosc Imaging 5:S55–S66

    Article  Google Scholar 

  • Kumar GA, Chattopadhyay A (2021) Membrane cholesterol regulates endocytosis and trafficking of the serotonin1A receptor: insights from acute cholesterol depletion. Biochim Biophys Acta 1866:158882

    Article  CAS  Google Scholar 

  • Kumar GA, Jafurulla M, Chattopadhyay A (2016) The membrane as the gatekeeper of infection: cholesterol in host-pathogen interaction. Chem Phys Lipids 199:179–185

    Article  CAS  PubMed  Google Scholar 

  • Kumari SN, Ranadive GN, Lala AK (1982) Growth of a yeast mutant on ring A modified cholesterol derivatives. Biochim Biophys Acta 692:441–446

    Article  CAS  Google Scholar 

  • Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, Fujiwara T (2005) Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34:351–378

    Article  CAS  PubMed  Google Scholar 

  • Lakowicz JR (2006) Principles of Fluorescence Spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  • Liscum L, Underwood KW (1995) Intracellular cholesterol transport and compartmentation. J Biol Chem 270:15443–15446

    Article  CAS  PubMed  Google Scholar 

  • MacDonald RC, MacDonald RI, Menco BP, Takeshita K, Subbarao NK, Hu LR (1991) Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta 1061:297–303

    Article  CAS  PubMed  Google Scholar 

  • Mitsche MA, Donald JG, Hobbs HH, Cohen JC (2015) Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways. ELife 4:07999

    Article  Google Scholar 

  • Mouritsen OG, Zuckermann MJ (2004) What’s so special about cholesterol? Lipids 39:1101–1113

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Chattopadhyay A (2005) Influence of ester and ether linkage in phospholipids on the environment and dynamics of the membrane interface: a wavelength-selective fluorescence approach. Langmuir 21:287–293

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Maxfield FR (2004) Membrane domains. Annu Rev Cell Dev Biol 20:839–866

    Article  CAS  PubMed  Google Scholar 

  • Nes WD (2011) Biosynthesis of cholesterol and other sterols. Chem Rev 111:6423–6451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyholm TKM, Nylund M, Slotte JP (2003) A calorimetric study of binary mixtures of dihydrosphingomyelin and sterols, sphingomyelins, or phosphatidylcholine. Biophys J 84:3138–3146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ollila OHS, Róg T, Karttunen M, Vattulainen I (2007) Role of sterol type on lateral pressure profiles of lipid membranes affecting membrane protein functionality: comparison between cholesterol, desmosterol, 7-dehydrocholesterol and ketosterol. J Struct Biol 159:311–323

    Article  Google Scholar 

  • Paila YD, Murty MRVS, Vairamani M, Chattopadhyay A (2008) Signaling by the human serotonin1A receptor is impaired in cellular model of Smith-Lemli-Opitz syndrome. Biochim Biophys Acta 1778:1508–1516

    Article  CAS  PubMed  Google Scholar 

  • Platt FM, Wassif C, Colaco A, Dardis A, Lloyd-Evans E, Bembi B, Porter FD (2014) Disorders of cholesterol metabolism and their unanticipated convergent mechanisms of disease. Annu Rev Genomics Hum Genet 15:173–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter FD, Herman GE (2011) Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res 52:6–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter JA, Young KE, Beachy PA (1996) Cholesterol modification of hedgehog signaling proteins in animal development. Science 274:255–259

    Article  CAS  PubMed  Google Scholar 

  • Pöyry S, Róg T, Karttunen M, Vattulainen I (2008) Significance of cholesterol methyl groups. J Phys Chem B 112:2922–2929

    Article  PubMed  Google Scholar 

  • Prendergast FG (1991) Time-resolved fluorescence techniques: methods and applications in biology. Curr Opin Struct Biol 1:1054–1059

    Article  CAS  Google Scholar 

  • Prendergast FG, Haugland RP, Callahan PJ (1981) 1-[4-(Trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene: synthesis, fluorescence properties, and use as a fluorescence probe of lipid bilayers. Biochemistry 20:7333–7338

    Article  CAS  PubMed  Google Scholar 

  • Ranadive GN, Lala AK (1987) Sterol-phospholipid interaction in model membranes: role of C5–C6 double bond in cholesterol. Biochemistry 26:2426–2431

    Article  CAS  PubMed  Google Scholar 

  • Revathi CJ, Chattopadhyay A, Srinivas UK (1994) Change in membrane organization induced by heat shock. Biochem Mol Biol Int 32:941–950

    CAS  PubMed  Google Scholar 

  • Róg T, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M (2007) What happens if cholesterol is made smoother: importance of methyl substituents in cholesterol ring structure on phosphatidylcholine-sterol interaction. Biophys J 92:3346–3357

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi M, D’Armiento M, Parisi I, Ferrari P, Hall CM, Cervasio M, Rivasi F, Balli F, Vecchione R, Corso G, Andira G, Parenti G (2007) Clinical phenotype of lathosterolosis. Am J Hum Genet 143A:2371–2381

    Google Scholar 

  • Sahu SS, Sarkar P, Shrivastava S, Chattopadhyay A (2019) Differential effects of simvastatin on membrane organization and dynamics in varying phases. Chem Phys Lipids 225:104831

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Kumar GA, Chattopadhyay A (2021) Late endosomal/lysosomal accumulation of a neurotransmitter receptor in a cellular model of Smith-Lemli-Opitz syndrome. Traffic 22:332–344

    Article  CAS  PubMed  Google Scholar 

  • Shinitzky M, Barenholz Y (1974) Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate. J Biol Chem 249:2652–2657

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava S, Paila YD, Dutta A, Chattopadhyay A (2008) Differential effects of cholesterol and its immediate biosynthetic precursors on membrane organization. Biochemistry 47:5668–5677

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava S, Sarkar P, Preira P, Salomé L, Chattopadhyay A (2022) Cholesterol-dependent dynamics of the serotonin1A receptor utilizing single particle tracking: analysis of diffusion modes. J Phys Chem B 126:6682–6690

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E (2000) How cells handle cholesterol. Science 290:1721–1726

    Article  CAS  PubMed  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Paila YD, Chattopadhyay A (2007) Differential effects of cholesterol and 7-dehydrocholesterol on the ligand binding activity of the hippocampal serotonin1A receptor: implications in SLOS. Biochem Biophys Res Commun 358:495–499

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Saxena R, Paila YD, Jafurulla M, Chattopadhyay A (2009) Differential effects of cholesterol and desmosterol on the ligand binding function of the hippocampal serotonin1A receptor: implications in desmosterolosis. Biochim Biophys Acta 1788:2169–2173

    Article  CAS  PubMed  Google Scholar 

  • Stottrup BL, Keller SL (2006) Phase behavior of lipid monolayers containing DPPC and cholesterol analogs. Biophys J 90:3176–3183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stubbs CD, Ho C, Slater SJ (1995) Fluorescence techniques for probing water penetration into lipid bilayers. J Fluoresc 5:19–28

    Article  CAS  PubMed  Google Scholar 

  • Subczynski WK, Wisniewska A, Yin J-J, Hyde JS, Kusumi A (1994) Hydrophobic barriers of lipid bilayer membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol. Biochemistry 33:7671–7681

    Article  Google Scholar 

  • Thelen KM, Falkai P, Bayer TA, Lütjohann D (2006) Cholesterol synthesis rate in human hippocampus declines with aging. Neurosci Lett 403:15–19

    Article  CAS  PubMed  Google Scholar 

  • Vainio S, Jansen M, Koivusalo M, Róg T, Karttunen M, Vattulainen I, Ikonen E (2006) Significance of sterol structural specificity. Desmosterol cannot replace cholesterol in lipid rafts. J Biol Chem 281:348–355

    Article  CAS  PubMed  Google Scholar 

  • Waterham HR (2006) Defects of cholesterol biosynthesis. FEBS Lett 580:5442–5449

    Article  CAS  PubMed  Google Scholar 

  • Xu X, London E (2000) The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39:843–849

    Article  CAS  PubMed  Google Scholar 

  • Yaplito-Lee J, Pai G, Hardikar W, Hong KM, Pitt J, Marum J, Amor DJ (2020) Successful treatment of lathosterolosis: a rare defect in cholesterol biosynthesis—A case report and review of literature. JIMD Reports 56:14–19

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Appelkvist E-L, Kristensson K, Dallner G (1996) The lipid compositions of different regions of rat brain during development and aging. Neurobiol Aging 17:869–875

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.C. gratefully acknowledges support from CSIR Bhatnagar Fellowship. We gratefully acknowledge members of the Chattopadhyay laboratory and Dr. Parijat Sarkar (Stanford University) for their comments and suggestions.

Funding

CSIR Bhatnagar Fellowship, R90807

Author information

Authors and Affiliations

Authors

Contributions

AC, YDP and SS: conceptualized the project and designed experiments. SS and YDP: performed experiments. SS and YDP: analyzed the data. SS and AC: wrote the manuscript. AC: edited the manuscript, organized access to research facilities and funding, and provided overall supervision and mentoring.

Corresponding author

Correspondence to Amitabha Chattopadhyay.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrivastava, S., Paila, Y.D. & Chattopadhyay, A. Role of Cholesterol and its Biosynthetic Precursors on Membrane Organization and Dynamics: A Fluorescence Approach. J Membrane Biol 256, 189–197 (2023). https://doi.org/10.1007/s00232-023-00278-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-023-00278-w

Keywords

Navigation