Skip to main content
Log in

A Review of Mechanics-Based Mesoscopic Membrane Remodeling Methods: Capturing Both the Physics and the Chemical Diversity

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Specialized classes of proteins, working together in a tightly orchestrated manner, induce and maintain highly curved cellular and organelles membrane morphology. Due to the various experimental constraints, including the resolution limits of imaging techniques, it is non-trivial to accurately elucidate interactions among the various components involved in membrane deformation. The spatial and temporal scales of the systems also make it formidable to investigate them using simulations with molecular details. Interestingly, mechanics-based mesoscopic models have been used with great success in recapitulating the membrane deformations observed in experiments. In this review, we collate together and discuss the various mechanics-based mesoscopic models for protein-mediated membrane deformation studies. In particular, we provide an elaborate description of a mesoscopic model where the membrane is modeled as a triangulated sheet and proteins are represented as either nematics or filaments. This representation allows us to explore the various aspects of protein–protein and protein–membrane interactions as well as examine the underlying mechanistic pathways for emergent behavior such as curvature-mediated protein localization and membrane deformation. We also put forward current efforts in the field towards back-mapping these mesoscopic models to finer-grained particle-based models—a framework that could be used to explore how molecular interactions propagate to physical scales and vice-versa. We end the review with an integrative-modeling-based road map where experimental imaging micrograph and biochemical data are combined with mesoscopic and molecular simulations methods in a theoretically consistent manner to faithfully recapitulate the multiple length and time scales in the membrane remodeling processes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Antonny Bruno, Burd Christopher, De Camilli Pietro, Chen Elizabeth, Daumke Oliver, Faelber Katja, Ford Marijn, Frolov Vadim A, Frost Adam, Hinshaw Jenny E, Kirchhausen Tom, Kozlov Michael M, Lenz Martin, Low Harry H, McMahon Harvey, Merrifield Christien, Pollard Thomas D, Robinson Phillip J, Roux Aurélien, Schmid Sandra (2016) Membrane fission by dynamin: what we know and what we need to know. The EMBO Journal, 35(21):2270–2284

  • Ayton Gary S, Voth Gregory A (2010) Multiscale simulation of protein mediated membrane remodeling. Seminars in Cell & Develop Biol 21(4):357–362

    Article  CAS  Google Scholar 

  • Ayton Gary, McWhirter J, Voth Gregory (2006) A second generation mesoscopic lipid bilayer model: Connections to field-theory descriptions of membranes and nonlocal hydrodynamics. J Chem Phys 124:64906

    Article  PubMed  Google Scholar 

  • Bahrami Amir Houshang, Lipowsky Reinhard, Weikl Thomas R (2012) Tubulation and aggregation of spherical nanoparticles adsorbed on vesicles. Phys Rev Lett 109(18):188102

    Article  PubMed  Google Scholar 

  • Bahrami Amir H, Raatz Michael, Agudo-Canalejo Jaime, Michel Raphael, Curtis Emily M, Hall Carol K, Gradzielski Michael, Lipowsky Reinhard, Weikl Thomas R (2014) Wrapping of nanoparticles by membranes. Adv Colloid Inter Sci 208:214–224

    Article  CAS  Google Scholar 

  • Bahrami Amir Houshang, Lin Mary G, Ren Xuefeng, Hurley James H, Hummer Gerhard (2017) Scaffolding the cup-shaped double membrane in autophagy. PLoS Comput Biol 13(10):e1005817

    Article  PubMed  PubMed Central  Google Scholar 

  • Baratam Krishnakanth, Jha Kirtika, Srivastava Anand (2021) Flexible pivoting of dynamin pleckstrin homology domain catalyzes fission: insights into molecular degrees of freedom. Mol Biol Cell 32(14):1306–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barato Andre C, Seifert Udo (2015) Thermodynamic uncertainty relation for biomolecular processes. Phys Rev Lett 114:158101

    Article  PubMed  Google Scholar 

  • Bassereau Patricia, Jin Rui, Baumgart Tobias, Deserno Markus, Dimova Rumiana, Frolov Vadim A, Bashkirov Pavel V, Grubmüller Helmut, Jahn Reinhard, Risselada H Jelger, Johannes Ludger, Kozlov Michael M, Lipowsky Reinhard, Pucadyil Thomas J, Zeno Wade F, Stachowiak Jeanne C, Stamou Dimitrios, Breuer Artù, Lauritsen Line, Simon Camille, Sykes Cécile, Voth Gregory A, Weikl Thomas R (2018) The 2018 biomembrane curvature and remodeling roadmap. Journal of Physics D: Applied Physics, 51(34):343001

  • Baumgärtner A, Ho J-S (1990) Crumpling of fluid vesicles. Physical Rev A 41(10):5747

    Article  Google Scholar 

  • Behera Arabinda, Kumar Gaurav, Sain Anirban (2020) Confined filaments in soft vesicles-the case of sickle red blood cells. Soft Matter 16(2):421–427

    Article  CAS  PubMed  Google Scholar 

  • Behera Arabinda, Kumar Gaurav, Akram Sk Ashif, Sain Anirban (2021) Deformation of membrane vesicles due to chiral surface proteins. Soft Matter 17(34):7953–7962

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya Soumya, Pucadyil Thomas J (2020) Cellular functions and intrinsic attributes of the atp-binding eps15 homology domain-containing proteins. Protein Sci 29(6):1321–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blood Philip D, Voth Gregory A (2006) Direct observation of bin/amphiphysin/rvs (bar) domain-induced membrane curvature by means of molecular dynamics simulations. Proc Nat Academy Sci 103(41):15068–15072

    Article  CAS  Google Scholar 

  • Bonazzi Francesco, Weikl Thomas R (2019) Membrane morphologies induced by arc-shaped scaffolds are determined by arc angle and coverage. Biophysical J 116(7):1239–1247

    Article  CAS  Google Scholar 

  • Bonazzi Francesco, Hall Carol K, Weikl Thomas R (2021) Membrane morphologies induced by mixtures of arc-shaped particles with opposite curvature. Soft Matter 17:268–275

    Article  CAS  PubMed  Google Scholar 

  • Bonomi Massimiliano, Camilloni Carlo, Cavalli Andrea, Vendruscolo Michele (2016) Metainference: a bayesian inference method for heterogeneous systems. Sci Adv 2(1):e1501177

    Article  PubMed  PubMed Central  Google Scholar 

  • Boomsma Wouter, Ferkinghoff-Borg Jesper, Lindorff-Larsen Kresten (2014) Combining experiments and simulations using the maximum entropy principle. PLOS Comput Biol 10(2):1–9

    Article  Google Scholar 

  • Botti Joëlle, Djavaheri-Mergny Mojgan, Pilatte Yannick, Codogno Patrice (2006) Autophagy signaling and the cogwheels of cancer. Autophagy 2(2):67–73

    Article  CAS  PubMed  Google Scholar 

  • Bradley Ryan P, Radhakrishnan Ravi (2016) Curvature-undulation coupling as a basis for curvature sensing and generation in bilayer membranes. Proc Nat Academy Sci 113(35):E5117–E5124

    Article  CAS  Google Scholar 

  • Brown Frank LH (2008) Elastic modeling of biomembranes and lipid bilayers. Annual Rev Phys Chem 59(1):685–712

    Article  CAS  Google Scholar 

  • Brown Frank LH (2011) Continuum simulations of biomembrane dynamics and the importance of hydrodynamic effects. Quarterly Rev Biophys 44(4):391–432

    Article  CAS  Google Scholar 

  • Brügger Britta (2014) Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annual Rev Biochem 83:79–98

    Article  Google Scholar 

  • Bupathy Arunkumar, Frenkel Daan, Sastry Srikanth (2022) Temperature protocols to guide selective self-assembly of competing structures. Proc Nat Academy Sci 119(8):e2119315119

    Article  CAS  Google Scholar 

  • Busch David J, Houser Justin R, Hayden Carl C, Sherman Michael B, Lafer Eileen M, Stachowiak Jeanne C (2015) Intrinsically disordered proteins drive membrane curvature. Nat Commun 6(1):1–11

    Google Scholar 

  • Canham Peter B (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theoretical Biol 26(1):61–81

    Article  CAS  Google Scholar 

  • Carlton Jez, Bujny Miriam, Rutherford Anna, Cullen Pete (2005) Sorting nexins - unifying trends and new perspectives. Traffic 6(2):75–82

    Article  CAS  PubMed  Google Scholar 

  • Chen Shuliang, Novick Peter, Ferro-Novick Susan (2012) Er network formation requires a balance of the dynamin-like gtpase sey1p and the lunapark family member lnp1p. Nat Cell Biol 14(7):707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Shuliang, Desai Tanvi, McNew James A, Gerard Patrick, Novick Peter J, Ferro-Novick Susan (2015) Lunapark stabilizes nascent three-way junctions in the endoplasmic reticulum. Proc Nat Academ Sci 112(2):418–423

    Article  CAS  Google Scholar 

  • Christoph Kalthoff, Jürgen Alves, Claus Urbanke, Ruth Knorr, Ungewickell Ernst J (2002) Unusual structural organization of the endocytic proteins ap180 and epsin 1. J Biol Chem 277(10):8209–8216

    Article  Google Scholar 

  • Cui Haosheng, Lyman Edward, Voth Gregory A (2011) Mechanism of membrane curvature sensing by amphipathic helix containing proteins. Biophys J 100(5):1271–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cécile Sykes, Julie Plastino (2010) Cell biology: Actin filaments up against a wall. 464(7287):365–366

  • Davtyan Aram, Simunovic Mijo, Voth Gregory A (2017) The mesoscopic membrane with proteins (mesm-p) model. J Chem Phys 147(4):044101

    Article  PubMed  PubMed Central  Google Scholar 

  • Deaven DM, Ho KM (1995) Molecular geometry optimization with a genetic algorithm. Phys Rev Lett 75:288–291

    Article  CAS  PubMed  Google Scholar 

  • Dowhan William (2017) Understanding phospholipid function: Why are there so many lipids? J Biol Chem 292(26):10755–10766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drin Guillaume, Antonny Bruno (2010) Amphipathic helices and membrane curvature. FEBS Letters 584(9):1840–1847

    Article  CAS  PubMed  Google Scholar 

  • Deo Raunaq, Kushwah Manish S, Kamerkar Sukrut C, Kadam Nagesh Y, Dar Srishti, Babu Kavita, Srivastava Anand, Pucadyil Thomas J (2018) Atp-dependent membrane remodeling links ehd1 functions to endocytic recycling. Nature Communications, 9

  • Espanol Pep, Warren Patrick (1995) Statistical mechanics of dissipative particle dynamics. EPL (Europhysics Letters) 30(4):191

    Article  CAS  Google Scholar 

  • Faelber Katja, Held Martin, Gao Song, Posor York, Haucke Volker, Noé Frank, Daumke Oliver (2012) Structural insights into dynamin-mediated membrane fission. Structure 20(10):1621–1628

    Article  CAS  PubMed  Google Scholar 

  • Fischer Thomas M (1992) Bending stiffness of lipid bilayers. i. bilayer couple or single-layer bending? Biophys J 63(5):1328–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer Thomas M (1992) Bending stiffness of lipid bilayers. ii. spontaneous curvature of the monolayers. Journal de Physique II 2(3):327–336

    Article  CAS  Google Scholar 

  • Fischer Thomas M (1992) Bending stiffness of lipid bilayers. iii. gaussian curvature. Journal de Physique II 2(3):337–343

    Article  CAS  Google Scholar 

  • Fischer Thomas M (1993) Bending stiffness of lipid bilayers: Iv. interpretation of red cell shape change. Biophys J 65(2):687–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer Thoms M (1993) Bending stiffness of lipid bilayers. v. comparison of two formulations. Journal de Physique II 3(12):1795–1805

    Article  CAS  Google Scholar 

  • Fošnarič Miha, Iglič Aleš, Slivnik Tomaž, Kralj-Iglič Veronika (2008) Flexible membrane inclusions and membrane inclusions induced by rigid globular proteins. Advances in planar lipid bilayers and liposomes 7:143–168

    Article  Google Scholar 

  • Frost Adam, Perera Rushika, Roux Aurélien, Spasov Krasimir, Destaing Olivier, Egelman Edward H, De Camilli Pietro, Unger Vinzenz M (2008) Structural basis of membrane invagination by f-bar domains. Cell 132(5):807–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frost Adam, Unger Vinzenz M, De Camilli Pietro (2009) The bar domain superfamily: membrane-molding macromolecules. Cell 137(2):191–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrmans Marc, Müller Marcus (2015) Coarse-grained simulation of dynamin-mediated fission. Soft Matter 11:1464–1480

    Article  CAS  PubMed  Google Scholar 

  • Gallop Jennifer L, Jao Christine C, Kent Helen M, Butler P Jonathan G, Evans Philip R, Langen Ralf, McMahon Harvey T (2006) Mechanism of endophilin n-bar domain-mediated membrane curvature. The EMBO J 25(12):2898–2910

    Article  CAS  PubMed  Google Scholar 

  • Gompper G, Kroll DM (1995) Phase diagram and scaling behavior of fluid vesicles. Physical Review E 51(1):514

    Article  CAS  Google Scholar 

  • Gompper G, Kroll DM (2004) Triangulated-surface models of fluctuating membranes. Statistical mechanics of membranes and surfaces, 359–426

  • Gorai Biswajit, Sahoo Anil Kumar, Srivastava Anand, Dixit Narendra M, Maiti Prabal K (2021) Concerted interactions between multiple gp41 trimers and the target cell lipidome may be required for hiv-1 entry. J Chem Informat Modeling 61(1):444–454

    Article  CAS  Google Scholar 

  • Gozuacik Devrim, Kimchi Adi (2007) Autophagy and cell death. Current topics in developmental biology 78:217–245

    Article  CAS  PubMed  Google Scholar 

  • Grime John, Dama James, Ganser-Pornillos Barbie, Woodward Cora, Jensen Grant, Yeager Mark, Voth Gregory (2016) Coarse-grained simulation reveals key features of hiv-1 capsid self-assembly. Nat commun 7:11568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groot Robert D, Rabone KL (2001) Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys J 81(2):725–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groot Robert D, Warren Patrick B (1997) Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107(11):4423–4435

    Article  CAS  Google Scholar 

  • Harker-Kirschneck Lena, Hafner Anne E, Yao Tina, Vanhille-Campos Christian, Jiang Xiuyun, Pulschen Andre, Hurtig Fredrik, Hryniuk Dawid, Culley Siân, Henriques Ricardo et al (2022) Physical mechanisms of escrt-iii-driven cell division. Proc Nat Academy Sci 119(1):e2107763119

    Article  CAS  Google Scholar 

  • Helfrich Wolfgang (1973) Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für Naturforschung c 28(11–12):693–703

    Article  CAS  Google Scholar 

  • Ho J-S, Baumgärtner A (1990) Simulations of fluid self-avoiding membranes. EPL (Europhysics Letters) 12(4):295

    Article  Google Scholar 

  • Hofrichter James, Ross Philip D, Eaton William A (1974) Kinetics and mechanism of deoxyhemoglobin s gelation: a new approach to understanding sickle cell disease. Proc Nat Academy Sci 71(12):4864–4868

    Article  CAS  Google Scholar 

  • Hoover William Graham (2006) Smooth particle applied mechanics: the state of the art. World Scientific, Singapore

    Book  Google Scholar 

  • Hoover Wm G, Hoover CG (2003) Links between microscopic and macroscopic fluid mechanics. Mol Phys 101(11):1559–1573

    Article  CAS  Google Scholar 

  • Hossein Amirali, Deserno Markus (2020) Spontaneous curvature, differential stress, and bending modulus of asymmetric lipid membranes. Biophysical J 118(3):624–642

    Article  CAS  Google Scholar 

  • Iglič Aleš, Babnik Blaž, Gimsa Ulrike, Kralj-Iglič Veronika (2005) On the role of membrane anisotropy in the beading transition of undulated tubular membrane structures. J Phys A: Mathematical and General 38(40):8527

    Article  Google Scholar 

  • Itoh Toshiki, Erdmann Kai S, Roux Aurelien, Habermann Bianca, Werner Hauke, De Camilli Pietro (2005) Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by bar and f-bar proteins. Developmental Cell 9(6):791–804

    Article  CAS  PubMed  Google Scholar 

  • Itzykson Claude, Zuber J-B (1986) Two-dimensional conformal invariant theories on a torus. Nuclear Physics B 275(4):580–616

    Article  Google Scholar 

  • Iyer Sahithya S, Srivastava Anand (2020) Degeneracy in molecular scale organization of biological membranes. Soft Matter 16(29):6752–6764

    Article  CAS  PubMed  Google Scholar 

  • Jhaveri Adip, Maisuria Dhruw, Varga Matthew, Mohammadyani Dariush, Johnson Margaret E (2021) Thermodynamics and free energy landscape of bar-domain dimerization from molecular simulations. J Phys Chem B 125(15):3739–3751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson ME, Chen A, Faeder JR, Henning P, Moraru II, Meier-Schellersheim M, Murphy RF, Prüstel T, Theriot JA, Uhrmacher AM (2021) Quantifying the roles of space and stochasticity in computer simulations for cell biology and cellular biochemistry. Mol Biol Cell 32(2):186–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabaso Doron, Bobrovska Nataliya, Góźdź Wojciech, Gov Nir, Kralj-Iglič Veronika, Veranič Peter, Iglič Aleš (2012) On the role of membrane anisotropy and bar proteins in the stability of tubular membrane structures. J Biomechanics 45(2):231–238

    Article  Google Scholar 

  • Kaksonen Marko, Roux Aurélien (2018) Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 19(5):313–326

    Article  CAS  PubMed  Google Scholar 

  • Kantor Yacov, Nelson David R (1987) Phase transitions in flexible polymeric surfaces. Phy Rev A 36(8):4020

    Article  CAS  Google Scholar 

  • Klumperman Judith, Pucadyil Thomas (2021) Understanding membrane traffic from molecular ensemble, energetics, and the cell biology of participant components. Curr Opinion Cell Biol 71:07

    Article  Google Scholar 

  • Kmiecik Sebastian, Gront Dominik, Kolinski Michal, Wieteska Lukasz, Dawid Aleksandra Elzbieta, Kolinski Andrzej (2016) Coarse-grained protein models and their applications. Chem Rev 116(14):7898–7936

    Article  CAS  PubMed  Google Scholar 

  • Kroll DM, Gompper Gerhard (1992) The conformation of fluid membranes: Monte carlo simulations. Science 255(5047):968–971

    Article  CAS  PubMed  Google Scholar 

  • Kroll DM, Gompper Gerhard (1992) Scaling behavior of randomly triangulated self-avoiding surfaces. Phys Rev A 46(6):3119

    Article  CAS  PubMed  Google Scholar 

  • Kumar PB Sunil, Gompper Gerhard, Lipowsky Reinhard (2001) Budding dynamics of multicomponent membranes. Phys Rev Lett 86(17):3911

    Article  Google Scholar 

  • Kumar Gaurav, Ramakrishnan N, Sain Anirban (2019) Tubulation pattern of membrane vesicles coated with biofilaments. Phys Rev E 99(2):022414

    Article  CAS  PubMed  Google Scholar 

  • Kumar Gaurav, Srivastava Anand (2022) Membrane remodeling due to mixture of multiple types of curvature proteins (in press, jctc). bioRxiv

  • Kozlov Michael M, Taraska Justin W (2022) Generation of nanoscopic membrane curvature for membrane trafficking, Nature reviews Molecular cell biology

  • Lebwohl Paul A, Lasher Gordon (1972) Nematic-liquid-crystal order–a monte carlo calculation. Physical Review A 6(1):426

    Article  Google Scholar 

  • Levental Kandice R, Lorent Joseph H, Lin Xubo, Skinkle Allison D, Surma Michal A, Stockenbojer Emily A, Gorfe Alemayehu A, Levental Ilya (2016) Polyunsaturated lipids regulate membrane domain stability by tuning membrane order. Biophys J 110(8):1800–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipowsky Reinhard (1991) The conformation of membranes. Nature 349(6309):475–481

    Article  CAS  PubMed  Google Scholar 

  • Lipowsky R (1995) Bending of membranes by anchored polymers. EPL (Europhysics Letters) 30(4):197

    Article  CAS  Google Scholar 

  • Lipowsky R, Sackmann E (1995) Structure and dynamics of membranes—from cells to vesicles (handbook of biological physics vol 1)

  • Lippincott-Schwartz Jennifer (1998) Cytoskeletal proteins and golgi dynamics. Curr Opinion Cell Biol 10(1):52–59

    Article  CAS  PubMed  Google Scholar 

  • Liu Jin, Tourdot Richard, Ramanan Vyas, Agrawal Neeraj J, Radhakrishanan Ravi (2012) Mesoscale simulations of curvature-inducing protein partitioning on lipid bilayer membranes in the presence of mean curvature fields. Mol Phys 110(11–12):1127–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubensky TC, Prost Jacques (1992) Orientational order and vesicle shape. Journal de Physique II 2(3):371–382

    Article  CAS  Google Scholar 

  • Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J, Rao Madan, Simha R Aditi (2013) Hydrodynamics of soft active matter. Rev Mod Phys 85:1143–1189

    Article  CAS  Google Scholar 

  • Mathew Robin, Karantza-Wadsworth Vassiliki, White Eileen (2007) Role of autophagy in cancer. Nat Rev Cancer 7(12):961–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattila Pieta K, Pykalainen Anette, Saarikangas Juha, Paavilainen Ville O, Vihinen Helena, Jokitalo Eija, Lappalainen Pekka (2007) Missing-in-metastasis and irsp53 deform pi (4, 5) p2-rich membranes by an inverse bar domain-like mechanism. J Cell Biol 176(7):953–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McWhirter J Liam, Ayton Gary, Voth Gregory A (2004) Coupling field theory with mesoscopic dynamical simulations of multicomponent lipid bilayers. Biophys J 87(5):3242–3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meijer Alfred J, Codogno Patrice (2006) Signalling and autophagy regulation in health, aging and disease. Molecular aspects of medicine 27(5–6):411–425

    Article  CAS  PubMed  Google Scholar 

  • Mesarec Luka, Góźdź Wojciech, Kralj Samo, Fošnarič Miha, Penič Samo, Kralj-Iglič Veronika, Iglič Aleš (2017) On the role of external force of actin filaments in the formation of tubular protrusions of closed membrane shapes with anisotropic membrane components. European Biophys J 46(8):705–718

    Article  CAS  Google Scholar 

  • Mizushima Noboru, Levine Beth, Cuervo Ana Maria, Klionsky Daniel J (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima Noboru, Yoshimori Tamotsu, Ohsumi Yoshinori (2011) The role of atg proteins in autophagosome formation. Annual review of cell and developmental biology 27:107–132

    Article  CAS  PubMed  Google Scholar 

  • Mostafavi Hakhamanesh, Thiyagarajan Sathish, Stratton Benjamin S, Karatekin Erdem, Warner Jason M, Rothman James E, O’Shaughnessy Ben (2017) Entropic forces drive self-organization and membrane fusion by snare proteins. Proc Nat Academy Sci 114(21):5455–5460

    Article  CAS  Google Scholar 

  • Molecular modeling of lipid membrane curvature induction by a peptide: More than simply shape. Biophysical Journal, 106(9):1958–1969, 2014

  • Masuda Michitaka, Mochizuki Naoki (2010) Structural characteristics of bar domain superfamily to sculpt the membrane. In Seminars in cell & developmental biology, volume 21, pages 391–398. Elsevier

  • Melo Arthur A, Sprink Thiemo, Noel Jeffrey K, Vázquez Sarandeses Elena, van Hoorn Chris, Loerke Justus, Spahn Christian MT, Daumke Oliver (2021) Cryo-electron tomography reveals structural insights into the membrane binding and remodeling activity of dynamin-like ehds. bioRxiv

  • Nguyen Michael, Vaikuntanathan Suriyanarayanan (2016) Design principles for nonequilibrium self-assembly. Proc Nat Academy Sci 113(50):14231–14236

    Article  CAS  Google Scholar 

  • Nguyen Michael, Qiu Yuqing, Vaikuntanathan Suriyanarayanan (2021) Organization and self-assembly away from equilibrium: Toward thermodynamic design principles. Annual Rev Condensed Matter Phys 12:273–290

    Article  CAS  Google Scholar 

  • Nicot Anne-Sophie, Toussaint Anne, Tosch Valérie, Kretz Christine, Wallgren-Pettersson Carina, Iwarsson Erik, Kingston Helen, Garnier Jean-Marie, Biancalana Valérie, Oldfors Anders et al (2007) Mutations in amphiphysin 2 (bin1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nature Genetics 39(9):1134–1139

    Article  CAS  PubMed  Google Scholar 

  • Noguchi Hiroshi (2017) Acceleration and suppression of banana-shaped-protein-induced tubulation by addition of small membrane inclusions of isotropic spontaneous curvatures. Soft Matter 13(42):7771–7779

    Article  CAS  PubMed  Google Scholar 

  • Noguchi Hiroshi (2019) Shape transition from elliptical to cylindrical membrane tubes induced by chiral crescent-shaped protein rods. Scientific Rep 9:08

    Google Scholar 

  • Noguchi Hiroshi (2021) Vesicle budding induced by binding of curvature-inducing proteins. Phys. Rev. E 104:014410

    Article  CAS  PubMed  Google Scholar 

  • Noguchi Hiroshi, Fournier Jean-Baptiste (2017) Membrane structure formation induced by two types of banana-shaped proteins. Soft Matter 13:4099–4111

    Article  CAS  PubMed  Google Scholar 

  • Noguchi Hiroshi, Fournier Jean-Baptiste (2017) Membrane structure formation induced by two types of banana-shaped proteins. Soft Matter 13(22):4099–4111

    Article  CAS  PubMed  Google Scholar 

  • Noguchi Hiroshi, Takasu Masako (2002) Adhesion of nanoparticles to vesicles: a brownian dynamics simulation. Biophys J 83:299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osawa Masaki, Anderson David E, Erickson Harold P (2009) Curved ftsz protofilaments generate bending forces on liposome membranes. The EMBO J 28(22):3476–3484

    Article  CAS  PubMed  Google Scholar 

  • Pak Alexander J, Voth Gregory A (2018) Advances in coarse-grained modeling of macromolecular complexes. Curr Opinion Struct Biol 52:119–126

    Article  CAS  Google Scholar 

  • Pak Alexander J, Grime John MA, Sengupta Prabuddha, Chen Antony K, Durumeric Aleksander EP, Srivastava Anand, Yeager Mark, Briggs John AG, Lippincott-Schwartz Jennifer, Voth Gregory A (2017) Immature hiv-1 lattice assembly dynamics are regulated by scaffolding from nucleic acid and the plasma membrane. Proc Nat Academy Sci 114(47):E10056–E10065

    Article  CAS  Google Scholar 

  • Perilla Juan, Schulten Klaus (2017) Physical properties of the hiv-1 capsid from all-atom molecular dynamics simulations. Nat Commun 8:15959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pezeshkian Weria, Marrink Siewert J (2021) Simulating realistic membrane shapes. Curr Opinion Cell Biol 71:103–111

    Article  CAS  PubMed  Google Scholar 

  • Pezeshkian Weria, König Melanie, Marrink Siewert J, Ipsen John H (2019) A multi-scale approach to membrane remodeling processes. Frontiers in Molecular Biosciences, 6

  • Pezeshkian Weria, König Melanie, Wassenaar Tsjerk A, Marrink Siewert J (2020) Backmapping triangulated surfaces to coarse-grained membrane models. Nat Commun 11(1):1–9

    Article  Google Scholar 

  • Picco Andrea, Kukulski Wanda, Manenschijn Hetty E, Specht Tanja, Briggs John AG, Kaksonen Marko (2018) The contributions of the actin machinery to endocytic membrane bending and vesicle formation. Mol Biol Cell 29(11):1346–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Presley John F, Smith Carolyn, Hirschberg Koty, Miller Chad, Cole Nelson B, Zaal Kristien JM, Lippincott-Schwartz Jennifer (1998) Golgi membrane dynamics. Mol Biol Cell 9(7):1617–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peter Brian J, Kent Helen M, Mills Ian G, Yvonne Vallis, Jonathan Butler P, G, Evans Philip R, McMahon Harvey T, (2004) Bar domains as sensors of membrane curvature: the amphiphysin bar structure. Science 303(5657):495–499

  • Pak Alexander J, Voth Gregory A (2018) Advances in coarse-grained modeling of macromolecular complexes. Current Opinion in Structural Biology, 52:119–126. Cryo electron microscopy: the impact of the cryo-EM revolution in biology \(\bullet\) Biophysical and computational methods - Part A

  • Quehenberger Oswald, Armando Aaron M, Brown Alex H, Milne Stephen B, Myers David S, Merrill Alfred H, Bandyopadhyay Sibali, Jones Kristin N, Kelly Samuel, Shaner Rebecca L, Cameron M, Elaine Wang, Robert C, Robert M, Thomas J, Christian RH, Ziqiang Guan, Gregory M, David A, Dawid W, Jeffery G, Shankar Subramaniam, Eoin Fahy, Edward A (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. Journal of lipid research, pages jlr–M009449

  • Raiborg Camilla, Stenmark Harald (2009) The escrt machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458:445–52

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan N, Sunil Kumar PB, Ipsen John H (2010) Monte carlo simulations of fluid vesicles with in-plane orientational ordering. Phys Rev E 81:041922

    Article  CAS  Google Scholar 

  • Ramakrishnan Netasan, Kumar PB Sunil, Ipsen John H (2010) Monte carlo simulations of fluid vesicles with in-plane orientational ordering. Physical Review E 81(4):041922

    Article  CAS  Google Scholar 

  • Ramakrishnan N, Kumar PB Sunil, Ipsen John H (2011) Modeling anisotropic elasticity of fluid membranes. Macromol Theory Simulations 20(7):446–450

    Article  CAS  Google Scholar 

  • Ramakrishnan Netasan, Kumar PB Sunil, Ipsen John H (2011) Modeling anisotropic elasticity of fluid membranes. Macromol Theory Simulations 20(7):446–450

    Article  CAS  Google Scholar 

  • Ramakrishnan N, Ipsen John H, Kumar PB Sunil (2012) Role of disclinations in determining the morphology of deformable fluid interfaces. Soft Matter 8(11):3058–3061

    Article  CAS  Google Scholar 

  • Ramakrishnan N, Kumar PB Sunil, Radhakrishnan Ravi (2014) Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins. Phys Rep 543(1):1–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan N, Bradley Ryan P, Tourdot Richard W, Radhakrishnan Ravi (2018) Biophysics of membrane curvature remodeling at molecular and mesoscopic lengthscales. J Phys: Condensed Matter 30(27):273001

    CAS  PubMed  Google Scholar 

  • Ramaswamy Sriram (2010) The mechanics and statistics of active matter. Annual Review of Condensed Matter Physics 1(1):323–345

    Article  Google Scholar 

  • Ramirez-Diaz Diego A, Merino-Salomón Adrián, Meyer Fabian, Heymann Michael, Rivas Germán, Bramkamp Marc, Schwille Petra (2021) Ftsz induces membrane deformations via torsional stress upon gtp hydrolysis. Nat Commun 12(1):1–11

    Article  Google Scholar 

  • Reynwar Benedict, Gregoria Illya V, Harmandaris Martin Müller, Kremer Kurt, Deserno Markus (2007) Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447:461–464

    Article  CAS  PubMed  Google Scholar 

  • Reynwar BJ, Illya G, Harmandaris VA, Müller MM, Kremer K, Deserno M (2007) Aggregation and vesiculation of membrane proteins by curvature-mediated interactions. Nature 447:461–464

    Article  CAS  PubMed  Google Scholar 

  • Russel Daniel, Lasker Keren, Webb Ben, Velázquez-Muriel Javier, Tjioe Elina, Schneidman-Duhovny Dina, Peterson Bret, Sali Andrej (2012) Putting the pieces together: Integrative modeling platform software for structure determination of macromolecular assemblies. PLOS Biology 10(1):1–5

    Article  Google Scholar 

  • Rao Madan, Mayor Satyajit (2014) Active organization of membrane constituents in living cells. Current Opinion in Cell Biology, 29

  • Sadeghi Mohsen, Weikl Thomas R, Noé Frank (2018) Particle-based membrane model for mesoscopic simulation of cellular dynamics. J Chem Phys 148(4):044901

    Article  PubMed  Google Scholar 

  • Sali Andrej (2021) From integrative structural biology to cell biology. J Biol Chem 296:100743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarasij RC, Mayor Satyajit, Rao Madan (2007) Chirality-induced budding: A raft-mediated mechanism for endocytosis and morphology of caveolae? Biophys J 92(9):3140–3158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Šarić Andela, Cacciuto Angelo (2012) Fluid membranes can drive linear aggregation of adsorbed spherical nanoparticles. Phys Rev Lett 108:118101

    Article  PubMed  Google Scholar 

  • Saunders Marissa G, Voth Gregory A (2013) Coarse-graining methods for computational biology. Annual Revi Biophys 42(1):73–93

    Article  CAS  Google Scholar 

  • Seifert Udo (1997) Configurations of fluid membranes and vesicles. Adv Phys 46(1):13–137

    Article  CAS  Google Scholar 

  • Seifert Udo, Lipowsky Reinhard (1990) Adhesion of vesicles. Phys Rev A 42(8):4768

    Article  CAS  PubMed  Google Scholar 

  • Seifert Udo, Berndl Karin, Lipowsky Reinhard (1991) Shape transformations of vesicles: Phase diagram for spontaneous-curvature and bilayer-coupling models. Phys Rev A 44(2):1182

    Article  CAS  PubMed  Google Scholar 

  • Sens Pierre, Rao Madan (2013) (re)modeling the golgi. Methods Cell Biol 118:299–310

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Caplan S (2016) BAR domains and BAR domain superfamily. Proteins 2:491–502

    Google Scholar 

  • Shevchenko Andrej, Simons Kai (2010) Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol 11(8):593

    Article  CAS  PubMed  Google Scholar 

  • Shibutani Shusaku T, Yoshimori Tamotsu (2014) A current perspective of autophagosome biogenesis. Cell Res 24(1):58–68

    Article  CAS  PubMed  Google Scholar 

  • Simunovic Mijo, Srivastava Anand, Voth Gregory A (2013) Linear aggregation of proteins on the membrane as a prelude to membrane remodeling. Proc Nat Academy Sci 110:20396–20401

    Article  CAS  Google Scholar 

  • Simunovic Mijo, Srivastava Anand, Voth Gregory A (2013) Linear aggregation of proteins on the membrane as a prelude to membrane remodeling. Proc Nat Academy Sci 110(51):20396–20401

    Article  CAS  Google Scholar 

  • Simunovic Mijo, Bassereau Patricia, Voth Gregory A (2018) Organizing membrane-curving proteins: the emerging dynamical picture. Curr Opinion Struct Biol 51:99–105

    Article  CAS  Google Scholar 

  • Simunovic Mijo, Bassereau Patricia, Voth Gregory A (2018) Organizing membrane-curving proteins: the emerging dynamical picture. Curr Opin Struct Biol 51:99–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simunovic Mijo, Evergren Emma, Callan-Jones Andrew, Bassereau Patricia (2019) Curving cells inside and out: roles of bar domain proteins in membrane shaping and its cellular implications. Annual Rev Cell Developmental Biol 35:111–129

    Article  CAS  Google Scholar 

  • Simunovic Mijo, Anela Šarić J, Henderson Michael, Ka Yee C, Lee, and Gregory A. Voth, (2017) Long-range organization of membrane-curving proteins. ACS Central Sci 3(12):1246–1253

  • Singer S Jonathan, Nicolson Garth L (1972) The fluid mosaic model of the structure of cell membranes: Cell membranes are viewed as two-dimensional solutions of oriented globular proteins and lipids. Science 175(4023):720–731

    Article  CAS  PubMed  Google Scholar 

  • Skruzny Michal, Desfosses Ambroise, Prinz Simone, Dodonova Svetlana O, Gieras Anna, Uetrecht Charlotte, Jakobi Arjen J, Abella Marc, Hagen Wim JH, Schulz Joachim et al (2015) An organized co-assembly of clathrin adaptors is essential for endocytosis. Developmental Cell 33(2):150–162

    Article  CAS  PubMed  Google Scholar 

  • Sreeja KK, Ipsen John H, Kumar PB Sunil (2015) Monte carlo simulations of fluid vesicles. J Phys: Condensed Matter 27(27):273104

    CAS  PubMed  Google Scholar 

  • Shi Zheng (2015) Mechanisms of membrane remodeling by peripheral proteins and divalent cations. PhD thesis, University of Pennsylvania, University of Pennsylvania

  • Stone Matthew B, Shelby Sarah A, Veatch Sarah L (2017) Super-resolution microscopy: Shedding light on the cellular plasma membrane. Chem Rev 117(11):7457–7477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takei Kohji, Slepnev Vladimir I, Haucke Volker, De Camilli Pietro (1999) Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat Cell Biol 1(1):33–39

    Article  CAS  PubMed  Google Scholar 

  • Tourdot Richard W, Ramakrishnan N, Radhakrishnan Ravi (2014) Defining the free-energy landscape of curvature-inducing proteins on membrane bilayers. Physical Review E 90(2):022717

    Article  Google Scholar 

  • Tourdot Richard W, Ramakrishnan N, Parihar Kshitiz, Radhakrishnan Ravi (2022) Quantification of curvature sensing behavior of curvature-inducing proteins on model wavy substrates. The Journal of Membrane Biology, 1–10

  • Tsai Feng-Ching, Henderson J Michael, Jarin Zack, Kremneva Elena, Senju Yosuke, Pernier Julien, Mikhajlov Oleg, Manzi John, Kogan Konstantin, Le Clainche Christophe, Voth Gregory A, Lappalainen Pekka, Bassereau Patricia (2022) Activated i-bar irsp53 clustering controls the formation of vasp-actin-based membrane protrusions. bioRxiv

  • Tourdot Richard W, Ramakrishnan N, Baumgart Tobias, Radhakrishnan Ravi (2015) Application of a free-energy-landscape approach to study tension-dependent bilayer tubulation mediated by curvature-inducing proteins. Physical Review E 92(4):042715

    Article  Google Scholar 

  • Van Den Bedem Henry, Fraser James S (2015) Integrative, dynamic structural biology at atomic resolution–it’s about time. Nat Methods 12(4):307–318

    Article  PubMed  PubMed Central  Google Scholar 

  • Van der Meer BW, Vertogen G, Dekker AJ, Ypma JGJ (1976) A molecular-statistical theory of the temperature-dependent pitch in cholesteric liquid crystals. J Chem Phys 65(10):3935–3943

    Article  Google Scholar 

  • van Weering JR, Sessions RB, Traer C, Kloer DP, Bhatia VK, Stamou D, Carlsson SR, Hurley JH, Cullen PJ (2012) In vitro snx-bar assembly reveals molecular details of distinct endosomal tubule formation. EMBO J 31:4466–80

    Article  PubMed  PubMed Central  Google Scholar 

  • van Meer Gerrit, de Kroon Anton IPM, (2011) Lipid map of the mammalian cell. J Cell Sci 124(1):5–8

  • Viswanath Shruthi, Sali Andrej (2019) Optimizing model representation for integrative structure determination of macromolecular assemblies. Proc Nat Academy Sci 116(2):540–545

    Article  CAS  Google Scholar 

  • Voeltz Gia, Rolls Melissa, Rapoport Tom (2002) Structural organization of the endoplasmic reticulum. EMBO Reports 3:944–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Songyu, Tukachinsky Hanna, Romano Fabian B, Rapoport Tom A (2016) Cooperation of the er-shaping proteins atlastin, lunapark, and reticulons to generate a tubular membrane network. eLife 5:e18605

    Article  PubMed  PubMed Central  Google Scholar 

  • Weikl Thomas R (2018) Membrane-mediated cooperativity of proteins. Annual Rev Phys Chem 69(1):521–539

    Article  CAS  Google Scholar 

  • Weria Pezeshkian, Grønhøj Hansen Allan, Ludger Johannes, Himanshu Khandelia, Shillcock Julian C, Sunil Kumar PB, Hjort Ipsen John (2016) Membrane invagination induced by shiga toxin b-subunit: from molecular structure to tube formation. Soft matter 12(23):5164–5171

    Article  Google Scholar 

  • Yang Kui, Han Xianlin (2016) Lipidomics: techniques, applications, and outcomes related to biomedical sciences. Trends Biochem Sci 41(11):954–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeno Wade F, Upayan Baul, Snead Wilton T, DeGroot Andre CM, Liping Wang, Lafer Eileen M, Thirumalai D, Stachowiak Jeanne C (2018) Synergy between intrinsically disordered domains and structured proteins amplifies membrane curvature sensing. Nat Commun 9(1):1–14

    Google Scholar 

  • Ziółkowska Natasza E, Karotki Lena, Rehman Michael, Huiskonen Juha T, Walther Tobias C (2011) Eisosome-driven plasma membrane organization is mediated by bar domains. Nat struct & Mol Biol 18(7):854–856

    Article  Google Scholar 

Download references

Acknowledgements

GK would like to acknowledge financial support from DST India, DBT-IISc, and SERB. High-performance computing facility “Beagle” setup from grants by a partnership between the Department of Biotechnology of India and the Indian Institute of Science (IISc-DBT partnership program) are greatly acknowledged. A.S. is thankful for the early career grant from DST, India. A.S. also thanks the DST for the National Supercomputing Mission grant. FIST program sponsored by the Department of Science and Technology and UGC, Centre for Advanced Studies and Ministry of Human Resource Development, India is gratefully acknowledged by the authors. This research was also supported in part by the National Science Foundation under Grant No. NSF PHY-1748958 (KITP e-visit).

Funding

This study is funded by the DST under the National Supercomputing Mission grant \(DST/NSM/RD-HPC-Applications/2021/03.10.\) This research was also supported in part by the National Science Foundation under Grant No. NSF PHY-1748958 (KITP e-visit). GK is supported as a National Postdoctoral fellow by SERB and SCD thanks the MoE for his financial support.

Author information

Authors and Affiliations

Authors

Contributions

AS created the blue prints for the review with the help of GK. GK wrote the paper with help from AS and SCD.

Corresponding author

Correspondence to Anand Srivastava.

Ethics declarations

Conflict of interest

Author GK declares that he has no conflict of interest. Author SCD declares that he has no conflict of interest. Author AS declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Duggisetty, S.C. & Srivastava, A. A Review of Mechanics-Based Mesoscopic Membrane Remodeling Methods: Capturing Both the Physics and the Chemical Diversity. J Membrane Biol 255, 757–777 (2022). https://doi.org/10.1007/s00232-022-00268-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-022-00268-4

Keywords

Navigation