Skip to main content

Remodeling of the Plasma Membrane by Surface-Bound Protein Monomers and Oligomers: The Critical Role of Intrinsically Disordered Regions

Abstract

The plasma membrane (PM) of cells is a dynamic structure whose morphology and composition is in constant flux. PM morphologic changes are particularly relevant for the assembly and disassembly of signaling platforms involving surface-bound signaling proteins, as well as for many other mechanochemical processes that occur at the PM surface. Surface-bound membrane proteins (SBMP) require efficient association with the PM for their function, which is often achieved by the coordinated interactions of intrinsically disordered regions (IDRs) and globular domains with membrane lipids. This review focuses on the role of IDR-containing SBMPs in remodeling the composition and curvature of the PM. The ability of IDR-bearing SBMPs to remodel the Gaussian and mean curvature energies of the PM is intimately linked to their ability to sort subsets of phospholipids into nanoclusters. We therefore discuss how IDRs of many SBMPs encode lipid-binding specificity or facilitate cluster formation, both of which increase their membrane remodeling capacity, and how SBMP oligomers alter membrane shape by monolayer surface area expansion and molecular crowding.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data used in this review are included in the manuscript.

References

  • Abankwa D et al (2007) Ras nanoclusters: molecular structure and assembly. Semin Cell Dev Biol 18(5):599–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abankwa D, Gorfe AA (2020) Mechanisms of Ras membrane organization and signaling: Ras rocks again. Biomolecules. https://doi.org/10.3390/biom10111522

    Article  PubMed  PubMed Central  Google Scholar 

  • Allain JM et al (2004) Fission of a multiphase membrane tube. Phys Rev Lett 93(15):158104

    Article  PubMed  Google Scholar 

  • Araya MK, Gorfe AA (2022) Phosphatidylserine and phosphatidylethanolamine asymmetry have negligible effect on the global structure, dynamics and interactions of the KRAS lipid anchor. J Phys Chem B 126(24):4491–4500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arbesú M et al (2017) The unique domain forms a fuzzy intramolecular complex in Src family kinases. Structure 25(4):630-640.e634

    Article  PubMed  Google Scholar 

  • Balasubramaniam M, Freed EO (2011) New insights into HIV assembly and trafficking. Physiology 26(4):236–251

    Article  CAS  PubMed  Google Scholar 

  • Bassereau P et al (2018) The 2018 biomembrane curvature and remodeling roadmap. J Phys D. https://doi.org/10.1088/1361-6463/aacb98

    Article  Google Scholar 

  • Bauer M, Pelkmans L (2006) A new paradigm for membrane-organizing and -shaping scaffolds. FEBS Lett 580(23):5559–5564

    Article  CAS  PubMed  Google Scholar 

  • Baumgart T et al (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425(6960):821–824

    Article  CAS  PubMed  Google Scholar 

  • Baumgart T et al (2005) Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys J 89(2):1067–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatia VK et al (2010) A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins. Semin Cell Dev Biol 21(4):381–390

    Article  CAS  PubMed  Google Scholar 

  • Bieniasz PD (2009) The cell biology of HIV-1 virion genesis. Cell Host Microbe 5(6):550–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binotti B et al (2021) An overview of the synaptic vesicle lipid composition. Archi Bioch Biophys 709:108966

    Article  CAS  Google Scholar 

  • Boucrot E et al (2012) Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains. Cell 149(1):124–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breckenridge WC et al (1972) The lipid composition of adult rat brain synaptosomal plasma membranes. Biochim Biophys Acta 266(3):695–707

    Article  CAS  PubMed  Google Scholar 

  • Busch DJ et al (2015) Intrinsically disordered proteins drive membrane curvature. Nat Commun 6(1):1–11

    Article  Google Scholar 

  • Campelo F et al (2008) The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys J 95(5):2325–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casey PJ, Seabra MC (1996) Protein prenyltransferases. J Biol Chem 271(10):5289–5292

    Article  CAS  PubMed  Google Scholar 

  • Chen Z et al (2016) The N-terminal amphipathic helix of endophilin does not contribute to its molecular curvature generation capacity. J Amn Chem Soc 138(44):14616–14622

    Article  CAS  Google Scholar 

  • Cornish J et al (2020) Intrinsically disordered proteins and membranes: a marriage of convenience for cell signalling? Biochem Soc Trans 48(6):2669–2689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cozier G et al (2004) Membrane targeting by pleckstrin homology domains. Curr Top Microbiol Immunol 282:49–88

    CAS  PubMed  Google Scholar 

  • Cui H et al (2011) Mechanism of membrane curvature sensing by amphipathic helix containing proteins. Biophys J 100(5):1271–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deserno M (2015) Fluid lipid membranes: from differential geometry to curvature stresses. Chem Ohys Lipids 185:11–45

    Article  CAS  Google Scholar 

  • Dharmavaram S et al (2019) Gaussian curvature and the budding kinetics of enveloped viruses. PLoS Comput Biol 15(8):e1006602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Do Carmo MP (2016) Differential geometry of curves and surfaces: revised and updated, 2nd edn. Courier Dover Publications, Mineola

    Google Scholar 

  • Dreher Y et al (2021) Division and regrowth of phase-separated giant unilamellar vesicles. Angew Chem Int Ed 60(19):10661–10669

    Article  CAS  Google Scholar 

  • Drin G, Antonny B (2010) Amphipathic helices and membrane curvature. FEBS Lett 584(9):1840–1847

    Article  CAS  PubMed  Google Scholar 

  • Duncan AL et al (2017) Protein crowding and lipid complexity influence the nanoscale dynamic organization of ion channels in cell membranes. Sci Rep 7(1):16647

    Article  PubMed  PubMed Central  Google Scholar 

  • Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  CAS  PubMed  Google Scholar 

  • Fakhree MAA et al (2019a) Shaping membranes with disordered proteins. Archiv Biochem Biophys 677:108163

    Article  CAS  Google Scholar 

  • Fakhree MAA et al (2019b) Cooperation of helix insertion and lateral pressure to remodel membranes. Biomacromol 20(3):1217–1223

    Article  CAS  Google Scholar 

  • Ferguson MAJ (1991) Lipid anchors on membrane proteins. Curr Opin Struct Biol 1(4):522–529

    Article  CAS  Google Scholar 

  • Frost A et al (2008) Structural basis of membrane invagination by F-BAR domains. Cell 132:807–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia R et al (2010) Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles. Soft Matt 6(1472–1482):6

    Google Scholar 

  • Gelderblom HR (1991) Assembly and morphology of HIV: potential effect of structure on viral function. AIDS 5(6):617–637

    Article  CAS  PubMed  Google Scholar 

  • Gorfe AA et al (2004) Membrane localization and flexibility of a lipidated ras peptide studied by molecular dynamics simulations. J Am Chem Soc 126(46):15277–15286

    Article  CAS  PubMed  Google Scholar 

  • Gorfe AA et al (2007a) H-ras protein in a bilayer: interaction and structure perturbation. J Am Chem Soc 129(40):12280–12286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorfe AA et al (2007b) Structure and dynamics of the full-length lipid-modified H-Ras protein in a 1,2-dimyristoylglycero-3-phosphocholine bilayer. J Med Chem 50(4):674–684

    Article  CAS  PubMed  Google Scholar 

  • Gorfe AA et al (2008) Water-membrane partition thermodynamics of an amphiphilic lipopeptide: an enthalpy-driven hydrophobic effect. Biophys J 95(7):3269–3277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorfe AA and Hocker HJ (2012) Membrane targeting: methods. In Encyclopedia of Life Sciences (eLS), John Wiley & Sons, Ltd: Chichester. https://doi.org/10.1002/9780470015902.a0002615.pub2

  • Granata D et al (2015) The inverted free energy landscape of an intrinsically disordered peptide by simulations and experiments. Sci Rep 5(1):1–15

    Article  Google Scholar 

  • Hamm M, Kozlov M (2000) Elastic energy of tilt and bending of fluid membranes. Eur Phys J E 3(4):323–335

    Article  CAS  Google Scholar 

  • Hancock JF et al (1990) A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63(1):133–139

    Article  CAS  PubMed  Google Scholar 

  • Harries D et al (2004) Enveloping of charged proteins by lipid bilayers. J Phys Chem B 108(4):1491–1496

    Article  CAS  Google Scholar 

  • Has C et al (2022) Insights into membrane curvature sensing and membrane remodeling by intrinsically disordered proteins and protein regions. J Membr Biol 255(2–3):237–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Has C, Das SL (2021) Recent developments in membrane curvature sensing and induction by proteins. Biochim Biophys Acta Gen Subj 1865(10):129971

    Article  CAS  PubMed  Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift Für Naturforschung C 28(11–12):693–703

    Article  CAS  Google Scholar 

  • Helfrich W (1981a) Amphiphilic mesophases made of defects. Phys Defects 35:716–755

    Google Scholar 

  • Helfrich W (1981b) Physics of defects. In: Balian R et al (eds) Les Houches Session XXXV. North-Holland, Amsterdam

    Google Scholar 

  • Hristova K et al (1999) An amphipathic α-helix at a membrane interface: a structural study using a novel X-ray diffraction method. J Mol Biol 290(1):99–117

    Article  CAS  PubMed  Google Scholar 

  • Hu M et al (2012) Determining the Gaussian curvature modulus of lipid membranes in simulations. Biophys J 102(6):1403–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu M et al (2013) Gaussian curvature elasticity determined from global shape transformations and local stress distributions: a comparative study using the MARTINI model. Faraday Discuss 161:365–382

    Article  CAS  PubMed  Google Scholar 

  • Iglič A, Rappolt M (2019) Advances in biomembranes and lipid self-assembly. Academic Press, Cambridge

    Google Scholar 

  • Israelachvili J et al (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2:72

    Google Scholar 

  • Janosi L et al (2012) Organization, dynamics, and segregation of Ras nanoclusters in membrane domains. Proc Natl Acad Sci USA 109(21):8097–8102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janosi L, Gorfe AA (2010) Segregation of negatively charged phospholipids by the polycationic and farnesylated membrane anchor of Kras. Biophys J 99(11):3666–3674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaumot M et al (2002) The linker domain of the Ha-Ras hypervariable region regulates interactions with exchange factors, Raf-1 and phosphoinositide 3-kinase. J Biol Chem 277(1):272–278

    Article  CAS  PubMed  Google Scholar 

  • Jülicher F, Lipowsky R (1993) Domain-induced budding of vesicles. Phys Rev Lett 70(19):2964

    Article  PubMed  Google Scholar 

  • Jülicher F, Lipowsky R (1996) Shape transformations of vesicles with intramembrane domains. Phys Rev E 53(3):2670

    Article  Google Scholar 

  • Kozlovsky Y, Kozlov MM (2002) Stalk model of membrane fusion: solution of energy crisis. Biophys J 82(2):882–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozlovsky Y, Kozlov MM (2003) Membrane fission: model for intermediate structures. Biophys J 85(1):85–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzmin PI et al (2005) Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt. Biophys J 88(2):1120–1133

    Article  CAS  PubMed  Google Scholar 

  • Larsen JB et al (2015) Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases. Nat Chem Biol 11(3):192–194

    Article  CAS  PubMed  Google Scholar 

  • Larsen JB et al (2020) How membrane geometry regulates protein sorting independently of mean curvature. ACS Cent Sci 6(7):1159–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JM (1997) The Gauss-Bonnet theorem. In: Lee JM (ed) Riemannian manifolds: an introduction to curvature. Springer, New York, pp 155–172

    Chapter  Google Scholar 

  • Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9(2):99–111

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Gorfe AA (2013a) Deformation of a two-domain lipid bilayer due to asymmetric insertion of lipid-modified Ras peptides. Soft Matt. https://doi.org/10.1039/C3SM51388B

    Article  Google Scholar 

  • Li Z, Gorfe AA (2013b) Aggregation of lipid-anchored full-length H-Ras in lipid bilayers: simulations with the MARTINI force field. PLOS One https://doi.org/10.1371/journal.pone.0071018

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Gorfe AA (2014) Membrane remodeling by surface-bound protein aggregates: insights from coarse-grained molecular dynamics simulation. J Phys Chem Lett 5(8):1457–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang H et al (2019) Membrane curvature sensing of the lipid-anchored K-Ras small GTPase. Life Sci Alliance. https://doi.org/10.26508/lsa.201900343

    Article  PubMed  PubMed Central  Google Scholar 

  • Lifshitz EM, Kosevich AM, Pitaevskii LP (1986) Chapter II—the equilibrium of rods and plates. In: Lifshitz EM, Kosevich AM, Pitaevskii LP (eds) Theory of elasticity, 3rd edn. Butterworth-Heinemann, Oxford, pp 38–86

    Chapter  Google Scholar 

  • Lin X et al (2018) Protein partitioning into ordered membrane domains: insights from simulations. Biophys J 114(8):1936–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linder ME, Deschenes RJ (2007) Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 8(1):74–84

    Article  CAS  PubMed  Google Scholar 

  • Lipowsky R (1992) Budding of membranes induced by intramembrane domains. J Physique II 2(10):1825–1840

    Article  CAS  Google Scholar 

  • Lipowsky R (1995) Bending of membranes by anchored polymers. EPL (europhysics Letters) 30(4):197

    Article  CAS  Google Scholar 

  • Lipowsky R (2007) Bending of membranes by anchored polymers. EPL (europhysics Letters) 30:197

    Article  Google Scholar 

  • Lipowsky R et al (2020) The giant vesicle book. Milton & Park, Taylor Francis

    Google Scholar 

  • Lipowsky R (2022) Remodeling of membrane shape and topology by curvature elasticity and membrane tension. Adv Biol (weinh) 6(1):e2101020

    Article  Google Scholar 

  • Lodish HF, Rothman JE (1979) The assembly of cell membranes. Scie Am 240(1):48–63

    Article  CAS  Google Scholar 

  • Marszalek JR, Lodish HF (2005) Docosahexanoid acid, fatty-acid interacting proteins, and neuronal function: breastmilk and fish are good for you. Annu Rev Cell Dev Biol 21(1):633–657

    Article  CAS  PubMed  Google Scholar 

  • Masuda M et al (2006) Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms. EMBO J 25(12):2889–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazharimousavi SH et al (2017) Generalized monge gauge. Int J Geom Methods Mod 14(04):1750062

    Article  Google Scholar 

  • Meleard P et al (1997) Bending elasticities of model membranes: influences of temperature and sterol content. Biophys J 72(6):2616–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monier S et al (1995) VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol Biol Cell 6(7):911–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monje-Galvan V, Voth GA (2020) Binding mechanism of the matrix domain of HIV-1 gag on lipid membranes. Elife. https://doi.org/10.7554/eLife.58621

    Article  PubMed  PubMed Central  Google Scholar 

  • Morlot S et al (2012) Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction. Cell 151(3):619–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muriaux D, Darlix J-L (2010) Properties and functions of the nucleocapsid protein in virus assembly. RNA Biol 7(6):744–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray D et al (1998) Electrostatics and the membrane association of Src: theory and experiment. Biochemistry 37(8):2145–2159

    Article  CAS  PubMed  Google Scholar 

  • Naito T et al (2019) Movement of accessible plasma membrane cholesterol by the GRAMD1 lipid transfer protein complex. Elife 8:e51401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novelli G, D’Apice MR (2011) Protein farnesylation and disease. J Inherit Metab Dis 35:917–926

    Article  Google Scholar 

  • O’Carroll IP et al (2013) Elements in HIV-1 Gag contributing to virus particle assembly. Virus Res 171(2):341–345

    Article  CAS  PubMed  Google Scholar 

  • Oldfield CJ, Dunker AK (2014) Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem 83:553–584

    Article  CAS  PubMed  Google Scholar 

  • Park S et al (2021) Developing initial conditions for simulations of asymmetric membranes: a practical recommendation. Biophys J 120(22):5041–5059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perera RM et al (2006) Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages. Proc Natl Acad Sci USA 103(51):19332–19337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfenninger KH (2009) Plasma membrane expansion: a neuron’s Herculean task. Nat Rev Neurosci 10(4):251–261

    Article  CAS  PubMed  Google Scholar 

  • Plowman SJ et al (2005) H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc Natl Acad Sci USA 102(43):15500–15505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pons M (2021) Basic residue clusters in intrinsically disordered regions of peripheral membrane proteins: modulating 2D diffusion on cell membranes. Physchem 1(2):152–162

    Article  Google Scholar 

  • Prévost C et al (2015) IRSp53 senses negative membrane curvature and phase separates along membrane tubules. Nat Commun 6(1):8529

    Article  PubMed  Google Scholar 

  • Prior IA et al (2003) Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Biol 160(2):165–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raja M (2011) Do small headgroups of phosphatidylethanolamine and phosphatidic acid lead to a similar folding pattern of the K(+) channel? J Membr Biol 242(3):137–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawicz W et al (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79(1):328–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Resh MD (2006) Trafficking and signaling by fatty-acylated and prenylated proteins. Nature Chem Biol 2:584–590

    Article  CAS  Google Scholar 

  • Riske KA et al (2006) Electrofusion of model lipid membranes viewed with high temporal resolution. Biophys Rev Lett 1(04):387–400

    Article  CAS  Google Scholar 

  • Saad JS et al (2006) Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci USA 103(30):11364–11369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt NW, Wong GC (2013) Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering. Curr Opin Solid State Mater Sci 17(4):151–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider MB et al (1984) Thermal fluctuations of large cylindrical phospholipid vesicles. Biophys J 45(5):891–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seelig J (2004) Thermodynamics of lipid–peptide interactions. Biochim Biophys Acta 1666(1–2):40–50

    Article  CAS  PubMed  Google Scholar 

  • Sengupta P, Lippincott-Schwartz J (2020) Revisiting membrane microdomains and phase separation: a viral perspective. Viruses. https://doi.org/10.3390/v12070745

    Article  PubMed  PubMed Central  Google Scholar 

  • She B, Dharmavaram S, Rouzina I, Bruinsma R (2018) Role of Gaussian Curvature in the Budding of HIV-1 Viruses. APS March Meeting 2018, abstract id.A54.004

  • Servuss RM et al (1976) Measurement of the curvature-elastic modulus of egg lecithin bilayers. Biochim Biophys Acta 436(4):900–903

    Article  CAS  PubMed  Google Scholar 

  • Shi Z, Baumgart T (2014) Dynamics and instabilities of lipid bilayer membrane shapes. Adv Colloid Interface Sci 208:76–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572

    Article  CAS  PubMed  Google Scholar 

  • Simunovic M et al (2013) Protein-mediated transformation of lipid vesicles into tubular networks. Biophys J 105(3):711–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simunovic M et al (2015) When physics takes over: BAR proteins and membrane curvature. Trends Cell Biol 25(12):780–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simunovic M et al (2016) How curvature-generating proteins build scaffolds on membrane nanotubes. Proc Natl Acad Sci USA 113(40):11226–11231. https://doi.org/10.1073/pnas.1606943113

    Article  CAS  Google Scholar 

  • Simunovic M et al (2016a) How curvature-generating proteins build scaffolds on membrane nanotubes. Proc Natl Acad Sci USA 113(40):11226–11231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simunovic M et al (2016b) Physical basis of some membrane shaping mechanisms. Philos Trans Royal Soc 374(2072):20160034

    Google Scholar 

  • Simunovic M et al (2017) Friction mediates scission of tubular membranes scaffolded by BAR proteins. Cell 170(1):172-184. e111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The Fluid mosaic model of the structure of cell membranes: cell membranes are viewed as two-dimensional solutions of oriented globular proteins and lipids. Science 175(4023):720–731

    Article  CAS  PubMed  Google Scholar 

  • Snead WT et al (2017) Membrane fission by protein crowding. Proc Natl Acad Sci USA 114(16):E3258–E3267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snead WT et al (2019) BAR scaffolds drive membrane fission by crowding disordered domains. J Cell Biol 218(2):664–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snead WT, Stachowiak JC (2018) Structure versus stochasticity-the role of molecular crowding and intrinsic disorder in membrane fission. J Mol Biol 430(16):2293–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stachowiak JC et al (2010) Steric confinement of proteins on lipid membranes can drive curvature and tubulation. Proc Natl Acad Sci USA 107(17):7781–7786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stachowiak JC et al (2012a) Membrane bending by protein-protein crowding. Nat Cell Biol 14(9):944–949

    Article  CAS  PubMed  Google Scholar 

  • Stachowiak JC et al (2012b) Membrane bending by protein–protein crowding. Nat Cell Biol 14(9):944–949

    Article  CAS  PubMed  Google Scholar 

  • Stachowiak JC et al (2013) A cost-benefit analysis of the physical mechanisms of membrane curvature. Nat Cell Biol 15(9):1019–1027

    Article  CAS  PubMed  Google Scholar 

  • Steinem C, Meinecke M (2021) ENTH domain-dependent membrane remodelling. Soft Matt 17(2):233–240

    Article  CAS  Google Scholar 

  • Steinkühler J et al (2020) Controlled division of cell-sized vesicles by low densities of membrane-bound proteins. Nat Commun 11(1):1–11

    Article  Google Scholar 

  • Strey H et al (1995) Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition. Biophys J 69(2):478–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suetsugu S et al (2014) Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins. Physiol Rev 94(4):1219–1248

    Article  CAS  PubMed  Google Scholar 

  • Takamori S et al (2006) Molecular anatomy of a trafficking organelle. Cell 127(4):831–846

    Article  CAS  PubMed  Google Scholar 

  • Takenawa T, Itoh T (2006) Membrane targeting and remodeling through phosphoinositide-binding domains. IUBMB Life 58(5–6):296–303

    Article  CAS  PubMed  Google Scholar 

  • Tenchov BG et al (2013) Fusion peptides promote formation of bilayer cubic phases in lipid dispersions. An X-Ray Diffraction Study Biophys J 104(5):1029–1037

    CAS  PubMed  Google Scholar 

  • van Meer G et al (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Venable RM et al (2015) Mechanical properties of lipid bilayers from molecular dynamics simulation. Chem Phys Lipids 192:60–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weise K et al (2011) Membrane-mediated induction and sorting of K-Ras microdomain signaling platforms. J Am Chem Soc 133(4):880–887

    Article  CAS  PubMed  Google Scholar 

  • Welman A et al (2000) Structure and function of the C-terminal hypervariable region of K-Ras4B in plasma membrane targetting and transformation. Oncogene 19(40):4582–4591

    Article  CAS  PubMed  Google Scholar 

  • Willumsen BM et al (1984) The p21 ras C-terminus is required for transformation and membrane association. Nature 310(5978):583–586

    Article  CAS  PubMed  Google Scholar 

  • Wilson JP et al (2011) Proteomic analysis of fatty-acylated proteins in mammalian cells with chemical reporters reveals S-acylation of histone H3 variants. Mol Cell Proteomics 10(3):M110.001198

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu H-H (2008) Historical development of the Gauss-Bonnet theorem. Sci China Ser A Math 51:777–784

    Article  Google Scholar 

  • Yandrapalli N et al (2016) Self assembly of HIV-1 Gag protein on lipid membranes generates PI(4,5)P2/cholesterol nanoclusters. Sci Rep 6:39332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeno WF et al (2018) Synergy between intrinsically disordered domains and structured proteins amplifies membrane curvature sensing. Nat Commun 9(1):4152

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeno WF et al (2019) Molecular mechanisms of membrane curvature sensing by a disordered Protein. J Am Chem Soc 141(26):10361–10371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y et al (2017) Lipid-sorting specificity encoded in K-Ras membrane anchor regulates signal output. Cell 168(1–2):239-251 e216

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y et al (2021a) RAS Nanoclusters selectively sort distinct lipid headgroups and acyl chains. Front Mol Biosci 8:686338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y et al (2021b) The KRAS and other prenylated polybasic domain membrane anchors recognize phosphatidylserine acyl chain structure. Proc Natl Acad Sci USA 118(6):e2014605118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Cho K-J, Plowman SJ, and Hancock JF (2012). Nonsteroial Anti-inflammatory Drugs Alter the Spatiotemporal Organization of Ras Proteins on the Plasma Membrane, J Biol Chem, 287, 16586–16595.

  • Zhou Y, Hancock JF (2015) Ras nanoclusters: versatile lipid-based signaling platforms. Biochim Biophys Acta Mol Cell Res 1853(4):841–849

    Article  CAS  Google Scholar 

  • Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7(1):9–19

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor John F Hancock and members of the Gorfe, Zhou and Hancock groups for helpful discussions.

Funding

This work was supported by the National Institutes of Health Institute of General Medicine Grant Nos. R01GM124233 and R01GM144836 (to AAG) and R01GM138668 (to YZ).

Author information

Authors and Affiliations

Authors

Contributions

MKA wrote the initial draft; YZ and AAG edited the draft; AAG supervised development of the manuscript; all authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Alemayehu A. Gorfe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araya, M.K., Zhou, Y. & Gorfe, A.A. Remodeling of the Plasma Membrane by Surface-Bound Protein Monomers and Oligomers: The Critical Role of Intrinsically Disordered Regions. J Membrane Biol 255, 651–663 (2022). https://doi.org/10.1007/s00232-022-00256-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-022-00256-8

Keywords