Molecular Characterization of the β2-like Octopamine Receptor of Helicoverpa armigera

Abstract

Helicoverpa armigera is a devastating polyphagous and cosmopolitan crop pest. There are reports of this insect being resistant to a variety of pesticides raising concern worldwide. The Octopamine (OA) binding β2-like receptor (OAR), a GPCR, is widely distributed in the nervous system of the insect and plays essential roles in the physiology and development and thus is an important target for insecticides. Yet, the molecular characterization of the H. armigera OAR (HarmOAR) and rational design of compounds based on this receptor is lacking. As a first step, we performed multiple sequence alignment of all insect OARs, which revealed that the sequences contained all conserved class A GPCR motifs. Phylogenetic studies showed clade-specific variations in the protein sequences primarily arising owing to differences in the ICL3 loop region. Further, a structural model of HarmOAR was built using the inactive human β2AR as a template. 0.9 µs atomistic simulations revealed conserved inter helical contacts and water molecules of HarmOAR. The detailed binding of octopamine was studied using molecular docking and 0.3 µs atomistic simulations. Twenty-two insecticides active against octopamine receptors of other insects were compiled and docked to HarmOAR followed by rescoring with binding free energies to prioritize them for H. armigera. Our study suggests α-terpineol to be a good candidate as an insecticide or insect repellent for Helicoverpa armigera.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Caers J, Verlinden H, Zels S, Vandersmissen HP, Vuerinckx K, Schoofs L (2012) More than two decades of research on insect neuropeptide GPCRs: an overview. Front Endocrinol 3:151

    CAS  Article  Google Scholar 

  2. Chelikani P, Hornak V, Eilers M, Reeves PJ, Smith SO, RajBhandary UL, Khorana HG (2007) Role of group-conserved residues in the helical core of beta2-adrenergic receptor. Proc Natl Acad Sci USA 104:7027–7032. https://doi.org/10.1073/pnas.0702024104

    CAS  Article  PubMed  Google Scholar 

  3. Cherezov V et al (2007) High-resolution crystal structure of an engineered human β2-adrenergic G protein–coupled receptor. Science 318:1258–1265

    CAS  Article  Google Scholar 

  4. Cvicek V, Goddard WA III, Abrol R (2016) Structure-based sequence alignment of the transmembrane domains of all human GPCRs: phylogenetic, structural and functional implications. PLoS Comput Biol 12:e1004805

    Article  Google Scholar 

  5. Dassault Systèmes BIOVIA, Discovery Studio Modeling Environment, Release 2017, San Diego Biovia (2017) Materials Studio R2 Dassault Systèmes BIOVIA, San Diego

  6. Enan E (2001) Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol C Toxicol Pharmacol 130:325–337. https://doi.org/10.1016/s1532-0456(01)00255-1

    CAS  Article  PubMed  Google Scholar 

  7. Evans PD (1993) Molecular studies on insect octopamine receptors. EXS 63:286–296. https://doi.org/10.1007/978-3-0348-7265-2_16

    CAS  Article  PubMed  Google Scholar 

  8. Farooqui T (2012) Review of octopamine in insect nervous systems. Open Access Insect Physiol. https://doi.org/10.2147/oaip.S20911

    Article  Google Scholar 

  9. Friesner RA et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196. https://doi.org/10.1021/jm051256o

    CAS  Article  PubMed  Google Scholar 

  10. Gullan PJ, Cranston PS (2014) The insects: an outline of entomology. Wiley, New York

    Google Scholar 

  11. Hanlon CD, Andrew DJ (2015) Outside-in signaling–a brief review of GPCR signaling with a focus on the Drosophila GPCR family. J Cell Sci 128:3533–3542. https://doi.org/10.1242/jcs.175158

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Harder E et al (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12:281–296. https://doi.org/10.1021/acs.jctc.5b00864

    CAS  Article  PubMed  Google Scholar 

  13. Hill CA, Sharan S, Watts VJ (2018) Genomics, GPCRs and new targets for the control of insect pests and vectors. Curr Opin Insect Sci 30:99–106. https://doi.org/10.1016/j.cois.2018.08.010

    Article  PubMed  Google Scholar 

  14. Huang J, MacKerell AD Jr (2013) CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J Comput Chem 34:2135–2145

    CAS  Article  Google Scholar 

  15. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–38):27–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  Google Scholar 

  16. Hunter S et al (2009) InterPro: the integrative protein signature database. Nucleic Acids Res 37:D211–D215

    CAS  Article  Google Scholar 

  17. Lam F, McNeil JN, Donly C (2013) Octopamine receptor gene expression in three lepidopteran species of insect. Peptides 41:66–73. https://doi.org/10.1016/j.peptides.2012.03.034

    CAS  Article  PubMed  Google Scholar 

  18. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486. https://doi.org/10.1007/BF00228148

    CAS  Article  PubMed  Google Scholar 

  19. Meng EC, Pettersen EF, Couch GS, Huang CC, Ferrin TE (2006) Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinf 7:339

    Article  Google Scholar 

  20. Nathanson JA, Hunnicutt EJ, Kantham L, Scavone C (1993) Cocaine as a naturally occurring insecticide. Proc Natl Acad Sci USA 90:9645–9648

    CAS  Article  Google Scholar 

  21. Nomiyama H, Yoshie O (2015) Functional roles of evolutionary conserved motifs and residues in vertebrate chemokine receptors. J Leukoc Biol 97:39–47. https://doi.org/10.1189/jlb.2RU0614-290R

    CAS  Article  PubMed  Google Scholar 

  22. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217. https://doi.org/10.1006/jmbi.2000.4042

    CAS  Article  PubMed  Google Scholar 

  23. Ohta H, Ozoe Y (2014) Molecular signalling, pharmacology, and physiology of octopamine and tyramine receptors as potential insect pest control targets. In: Cohen E (ed) Advances in insect physiology, vol 46. Elsevier, Amsterdam, pp 73–166

    Google Scholar 

  24. Orr G, Gole J, Downer R (1985) Characterisation of an octopamine-sensitive adenylate cyclase in haemocyte membrane fragments of the American cockroach Periplaneta americana L. Insect Biochem 15:695–701

    CAS  Article  Google Scholar 

  25. Pronk S et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854. https://doi.org/10.1093/bioinformatics/btt055

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Release S (2016) 2: Maestro. Schrödinger, LLC, New York, NY

    Google Scholar 

  27. Roeder T (1990) High-affinity antagonists of the locust neuronal octopamine receptor. Eur J Pharmacol 191:221–224. https://doi.org/10.1016/0014-2999(90)94151-m

    CAS  Article  PubMed  Google Scholar 

  28. Roeder T, Degen J, Gewecke M (1998) Epinastine, a highly specific antagonist of insect neuronal octopamine receptors. Eur J Pharmacol 349:171–177. https://doi.org/10.1016/s0014-2999(98)00192-7

    CAS  Article  PubMed  Google Scholar 

  29. Tieleman D, Berendsen H (1998) A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys J 74:2786–2801

    CAS  Article  Google Scholar 

  30. Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232-235. https://doi.org/10.1093/nar/gkw256

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Vanommeslaeghe K et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194. https://doi.org/10.1038/nature11896

    CAS  Article  PubMed  Google Scholar 

  33. Venkatakrishnan AJ et al (2019) Diverse GPCRs exhibit conserved water networks for stabilization and activation. Proc Natl Acad Sci USA 116:3288–3293. https://doi.org/10.1073/pnas.1809251116

    CAS  Article  PubMed  Google Scholar 

  34. Wacker D et al (2013) Structural features for functional selectivity at serotonin receptors. Science 340:615–619

    CAS  Article  Google Scholar 

  35. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8:127–134. https://doi.org/10.1093/protein/8.2.127

    CAS  Article  PubMed  Google Scholar 

  36. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  Google Scholar 

  37. Wu SF, Xu G, Qi YX, Xia RY, Huang J, Ye GY (2014) Two splicing variants of a novel family of octopamine receptors with different signaling properties. J Neurochem 129(1):37–47

    CAS  Article  Google Scholar 

Download references

Acknowledgements

MJ and NG thank Bioinformatics Centre for infrastructure support. RJ would like to acknowledge the support provided by CSIR-National Chemical Laboratory as a start-up fund. SN thanks the Department of Biotechnology, India, for fellowship.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Rakesh S. Joshi or Manali Joshi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (PDF 2044 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gujar, N., V. Nikte, S., Joshi, R.S. et al. Molecular Characterization of the β2-like Octopamine Receptor of Helicoverpa armigera. J Membrane Biol (2021). https://doi.org/10.1007/s00232-021-00172-3

Download citation

Keywords

  • Helicoverpa armigera
  • Phylogeny
  • Octopamine receptor
  • Molecular dynamics
  • Docking
  • Insecticides