Secretion of Recombinant Human Annexin V in Fusion with the Super Folder GFP for Labelling Phosphatidylserine-Exposing Membranes

Abstract

Annexin V (ANXV), mostly characterized by its ability to interact with biological membranes in a calcium-dependent manner. ANXV interacts mainly with phosphatidylserine (PS), for that fluorescent ANXV widely produced and used as a sensitive and specific probe to mark apoptotic cells or any PS-containing bilayers membranes. Many reports described the prokaryotic expression of recombinant human ANXV. To overcome some of E. coli expression limitations, we aimed in this work to investigate unconventional alternative expression system in mammalian cells for producing secreted human ANXV in fusion with the super folder green fluorescent protein (sfGFP). HEK239T cells were transfected using polyethylenimine (PEI) and pcDNA-sfGFP-ANXV plasmid. Forty-eight hours post transfection, direct fluorescence measurement, immunoblotting and ELISA confirmed the presence of secreted sfGFP-ANXV in cells supernatant. The yield of secreted 6 × His-tagged sfGFP-ANXV after affinity purification was estimated to be around 2 µg per 1 ml of cells supernatant. The secretion system was proper to produce a fully functional sfGFP-ANXV fusion protein in quantities enough to recognize and bind PS-containing surfaces or liposomes. Besides, biological assays such as flow cytometry and fluorescent microscopy confirmed the capacity of the secreted sfGFP-ANXV to detect PS exposure on apoptotic cells. Taken together, we present mammalian expression as a quick, affordable and endotoxin-free system to produce sfGFP-ANXV fusion protein. The secreted sfGFP-ANXV in eukaryotic system is a promising biotechnological tool, it opens up new horizons for additional applications in the detection of PS bearing surfaces and apoptosis in vitro and in vivo assays.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Availability of Data and Materials

This manuscript has no associate data and materials can be provided upon reasonable request to the corresponding author.

Abbreviations

ANXV:

Annexin V

ELISA:

Enzyme-linked immunosorbant assay

sfGFP:

Super folder green fluorescent protein

PI:

Probidium iodide

PS:

Phosphatidylserine

References

  1. Abbady AQ, Twair A, Ali B, Murad H (2017) Characterization of Annexin V fusion with the superfolder GFP in liposomes binding and apoptosis detection. Front Physiol 8:317. https://doi.org/10.3389/fphys.2017.00317

    Article  PubMed  PubMed Central  Google Scholar 

  2. Al-Homsi L, Al-Assad JM, Kweider M, Al-Okla S, Abbady AQ (2012) Construction of pRSET-sfGFP plasmid for fusion-protein expression, purification and detection Jordan. J Biol Sci 5:279–288

    Google Scholar 

  3. Arnold P, Lu X, Amirahmadi F, Brandl K, Arnold JM, Feng Q (2014) Recombinant human annexin A5 inhibits proinflammatory response and improves cardiac function and survival in mice with endotoxemia. Crit Care Med 42:e32-41. https://doi.org/10.1097/CCM.0b013e3182a63e01

    CAS  Article  PubMed  Google Scholar 

  4. Aronson DE, Costantini LM, Snapp EL (2011) Superfolder GFP is fluorescent in oxidizing environments when targeted via the Sec translocon. Traffic 12:543–548. https://doi.org/10.1111/j.1600-0854.2011.01168.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Backliwal G, Hildinger M, Hasija V, Wurm FM (2008) High-density transfection with HEK-293 cells allows doubling of transient titers and removes need for a priori DNA complex formation with PEI. Biotechnol Bioeng 99:721–727. https://doi.org/10.1002/bit.21596

    CAS  Article  PubMed  Google Scholar 

  6. Baldi L, Hacker DL, Adam M, Wurm FM (2007) Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol Lett 29:677–684. https://doi.org/10.1007/s10529-006-9297-y

    CAS  Article  PubMed  Google Scholar 

  7. Barnes LM, Bentley CM, Dickson AJ (2003) Stability of protein production from recombinant mammalian cells. Biotechnol Bioeng 81:631–639. https://doi.org/10.1002/bit.10517

    CAS  Article  PubMed  Google Scholar 

  8. Boersma HH et al (2005) Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med 46:2035–2050

    CAS  PubMed  Google Scholar 

  9. Boussif O, Zanta MA, Behr JP (1996) Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000-fold. Gene Therapy 3:1074–1080

    CAS  PubMed  Google Scholar 

  10. Brunner D, Frank J, Appl H, Schoffl H, Pfaller W, Gstraunthaler G (2010) Serum-free cell culture: the serum-free media interactive online database. Altex 27:53–62. https://doi.org/10.14573/altex.2010.1.53

    Article  PubMed  Google Scholar 

  11. Ernst JD, Yang L, Rosales JL, Broaddus VC (1998) Preparation and characterization of an endogenously fluorescent annexin for detection of apoptotic cells. Anal Biochem 260:18–23. https://doi.org/10.1006/abio.1998.2677

    CAS  Article  PubMed  Google Scholar 

  12. Feng J, Feng T, Yang C, Wang W, Sa Y, Feng Y (2018) Feasibility study of stain-free classification of cell apoptosis based on diffraction imaging flow cytometry and supervised machine learning techniques. Apoptosis 23:290–298. https://doi.org/10.1007/s10495-018-1454-y

    CAS  Article  PubMed  Google Scholar 

  13. Geisse S, Fux C (2009) Recombinant protein production by transient gene transfer into Mammalian cells. Methods Enzymol 463:223–238. https://doi.org/10.1016/S0076-6879(09)63015-9

    CAS  Article  PubMed  Google Scholar 

  14. Gemmill TR, Trimble RB (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochem Biophys Acta 1426:227–237. https://doi.org/10.1016/s0304-4165(98)00126-3

    CAS  Article  PubMed  Google Scholar 

  15. Gerke V, Creutz CE, Moss SE (2005) Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 6:449–461. https://doi.org/10.1038/nrm1661

    CAS  Article  PubMed  Google Scholar 

  16. Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224. https://doi.org/10.1126/science.1124618

    CAS  Article  PubMed  Google Scholar 

  17. Godbey WT, Wu KK, Mikos AG (1999) Poly(ethylenimine) and its role in gene delivery. J Control Release 60:149–160. https://doi.org/10.1016/s0168-3659(99)00090-5

    CAS  Article  PubMed  Google Scholar 

  18. Hu J et al (2018) A fusion-protein approach enabling mammalian cell production of tumor targeting protein domains for therapeutic development. Protein Sci 27:933–944. https://doi.org/10.1002/pro.3399

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Iaccarino L et al (2011) Anti-annexins autoantibodies: their role as biomarkers of autoimmune diseases. Autoimmun Rev 10:553–558. https://doi.org/10.1016/j.autrev.2011.04.007

    CAS  Article  PubMed  Google Scholar 

  20. Jarvis DL, Kawar ZS, Hollister JR (1998) Engineering N-glycosylation pathways in the baculovirus-insect cell system. Curr Opin Biotechnol 9:528–533. https://doi.org/10.1016/s0958-1669(98)80041-4

    CAS  Article  PubMed  Google Scholar 

  21. Kang TH et al (2020) Annexin A5 as an immune checkpoint inhibitor and tumor-homing molecule for cancer treatment. Nat Commun 11:1137. https://doi.org/10.1038/s41467-020-14821-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Kennedy JR (2015) Attenuating a sickle cell crisis with annexin V. Med Hypotheses 84:434–436. https://doi.org/10.1016/j.mehy.2015.01.037

    CAS  Article  PubMed  Google Scholar 

  23. Khan KH (2013) Gene expression in Mammalian cells and its applications. Adv Pharm Bull 3:257–263. https://doi.org/10.5681/apb.2013.042

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Kichler A, Remy JS, Boussif O, Frisch B, Boeckler C, Behr JP, Schuber F (1995) Efficient gene delivery with neutral complexes of lipospermine and thiol-reactive phospholipids. Biochem Biophys Res Commun 209:444–450. https://doi.org/10.1006/bbrc.1995.1522

    CAS  Article  PubMed  Google Scholar 

  25. Kim TK, Eberwine JH (2010) Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397:3173–3178. https://doi.org/10.1007/s00216-010-3821-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Lee K, Bae KH, Lee Y, Lee SH, Ahn CH, Park TG (2010) Pluronic/polyethylenimine shell crosslinked nanocapsules with embedded magnetite nanocrystals for magnetically triggered delivery of siRNA. Macromol Biosci 10:239–245. https://doi.org/10.1002/mabi.200900291

    CAS  Article  PubMed  Google Scholar 

  27. Lee SH, Lee PH, Kim BG, Hong J, Jang AS (2018) Annexin A5 protein as a potential biomarker for the diagnosis of asthma. Lung 196:681–689. https://doi.org/10.1007/s00408-018-0159-x

    CAS  Article  PubMed  Google Scholar 

  28. Legastelois I, Buffin S, Peubez I, Mignon C, Sodoyer R, Werle B (2017) Non-conventional expression systems for the production of vaccine proteins and immunotherapeutic molecules. Hum Vaccine Immunother 13:947–961. https://doi.org/10.1080/21645515.2016.1260795

    Article  Google Scholar 

  29. Longo PA, Kavran JM, Kim MS, Leahy DJ (2013) Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol 529:227–240. https://doi.org/10.1016/B978-0-12-418687-3.00018-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Mamat U et al (2015) Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins. Microb Cell Fact 14:57. https://doi.org/10.1186/s12934-015-0241-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Nelson CA, McCoy WH, Fremont DH (2014) Eukaryotic expression systems for structural studies. Methods Mol Biol 1140:107–116. https://doi.org/10.1007/978-1-4939-0354-2_8

    CAS  Article  PubMed  Google Scholar 

  32. Nickel W (2005) Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic 6:607–614. https://doi.org/10.1111/j.1600-0854.2005.00302.x

    CAS  Article  PubMed  Google Scholar 

  33. Pari GS, Keown WA (1997) Experimental strategies in efficient transfection of mammalian cells. Calcium phosphate and DEAE-dextran. Methods Mol Biol 62:301–306. https://doi.org/10.1385/0-89603-480-1:301

    CAS  Article  PubMed  Google Scholar 

  34. Park JH et al (2016) Annexin A5 increases survival in murine sepsis model by inhibiting HMGB1-mediated pro-inflammation and coagulation. Mol Med 22:424–436. https://doi.org/10.2119/molmed.2016.00026

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88. https://doi.org/10.1038/nbt1172

    CAS  Article  PubMed  Google Scholar 

  36. Rand JH, Wu XX, Lin EY, Griffel A, Gialanella P, McKitrick JC (2012) Annexin A5 binds to lipopolysaccharide and reduces its endotoxin activity. mBio. https://doi.org/10.1128/mBio.00292-11

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rizzo MA, Davidson MW, Piston DW (2009) Fluorescent protein tracking and detection: fluorescent protein structure and color variants. Cold Spring Harb Protoc 2009:pdb top63. https://doi.org/10.1101/pdb.top63

    Article  PubMed  Google Scholar 

  38. Rodriguez EA et al (2017) The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem Sci 42:111–129. https://doi.org/10.1016/j.tibs.2016.09.010

    CAS  Article  PubMed  Google Scholar 

  39. Rueda F, Cano-Garrido O, Mamat U, Wilke K, Seras-Franzoso J, Garcia-Fruitos E, Villaverde A (2014) Production of functional inclusion bodies in endotoxin-free Escherichia coli. Appl Microbiol Biotechnol 98:9229–9238. https://doi.org/10.1007/s00253-014-6008-9

    CAS  Article  PubMed  Google Scholar 

  40. Shao R, Xiong C, Wen X, Gelovani JG, Li C (2007) Targeting phosphatidylserine on apoptotic cells with phages and peptides selected from a bacteriophage display library. Mol Imaging 6:417–426

    CAS  Article  Google Scholar 

  41. Sohma H et al (2013) Evaluation of annexin A5 as a biomarker for Alzheimer’s disease and dementia with lewy bodies. Front Aging Neurosci 5:15. https://doi.org/10.3389/fnagi.2013.00015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Spector DL, Goldman RD (2010) Constructing and expressing fluorescent protein fusions. Cold Spring Harb Protoc 2010:pdb top87. https://doi.org/10.1101/pdb.top87

    Article  PubMed  Google Scholar 

  43. Spector DL, Goldman RD (2010) Transfection of mammalian cells with fluorescent protein fusions. Cold Spring Harb Protoc 2010:pdb prot5517. https://doi.org/10.1101/pdb.prot5517

    Article  PubMed  Google Scholar 

  44. Stocker M, Pardo A, Hetzel C, Reutelingsperger C, Fischer R, Barth S (2008) Eukaryotic expression and secretion of EGFP-labeled annexin A5. Protein Expr Purif 58:325–331. https://doi.org/10.1016/j.pep.2007.12.009

    CAS  Article  PubMed  Google Scholar 

  45. Thomas P, Smart TG (2005) HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods 51:187–200. https://doi.org/10.1016/j.vascn.2004.08.014

    CAS  Article  PubMed  Google Scholar 

  46. Twair A, Al-Okla S, Zarkawi M, Abbady AQ (2014) Characterization of camel nanobodies specific for superfolder GFP fusion proteins. Mol Biol Rep 41:6887–6898. https://doi.org/10.1007/s11033-014-3575-x

    CAS  Article  PubMed  Google Scholar 

  47. Tzima E, Trotter PJ, Orchard MA, Walker JH (1999) Annexin V binds to the actin-based cytoskeleton at the plasma membrane of activated platelets. Exp Cell Res 251:185–193. https://doi.org/10.1006/excr.1999.4553

    CAS  Article  PubMed  Google Scholar 

  48. Uhlen M, Forsberg G, Moks T, Hartmanis M, Nilsson B (1992) Fusion proteins in biotechnology. Curr Opin Biotechnol 3:363–369. https://doi.org/10.1016/0958-1669(92)90164-e

    CAS  Article  PubMed  Google Scholar 

  49. van Genderen HO, Kenis H, Hofstra L, Narula J, Reutelingsperger CP (2008) Extracellular annexin A5: functions of phosphatidylserine-binding and two-dimensional crystallization. Biochim Biophys Acta 1783:953–963. https://doi.org/10.1016/j.bbamcr.2008.01.030

    CAS  Article  PubMed  Google Scholar 

  50. Vangelista L, Cesco-Gaspere M, Lorenzi R, Burrone O (2002) A minimal receptor-Ig chimera of human FcepsilonRI alpha-chain efficiently binds secretory and membrane IgE. Protein Eng 15:51–57. https://doi.org/10.1093/protein/15.1.51

    CAS  Article  PubMed  Google Scholar 

  51. Vermeulen K, Van Bockstaele DR, Berneman ZN (2005) Apoptosis: mechanisms and relevance in cancer. Ann Hematol 84:627–639. https://doi.org/10.1007/s00277-005-1065-x

    CAS  Article  PubMed  Google Scholar 

  52. Walsh MT, Celestin OM, Thierer JH, Rajan S, Farber SA, Hussain MM (2020) Model systems for studying the assembly, trafficking, and secretion of apoB lipoproteins using fluorescent fusion proteins. J Lipid Res 61:316–327. https://doi.org/10.1194/jlr.RA119000259

    CAS  Article  PubMed  Google Scholar 

  53. Wang J et al (2015) Quantitative analysis of annexin V-membrane interaction by flow cytometry. Eur Biophys J 44:325–336. https://doi.org/10.1007/s00249-015-1026-9

    CAS  Article  PubMed  Google Scholar 

  54. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398. https://doi.org/10.1038/nbt1026

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Director General of the Atomic Energy Commission of Syria and the head of the Molecular Biology and Biotechnology department for their continuous support throughout this work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdul Qader Abbady.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Twair, A., Kassem, I., Murad, H. et al. Secretion of Recombinant Human Annexin V in Fusion with the Super Folder GFP for Labelling Phosphatidylserine-Exposing Membranes. J Membrane Biol (2021). https://doi.org/10.1007/s00232-021-00169-y

Download citation

Keywords

  • Annexin V
  • sfGFP
  • Eukaryotic expression
  • Mammalian transfection
  • Phospholipids
  • Apoptosis