Skip to main content
Log in

Interactions Determining the Structural Integrity of the Trimer of Plant Light Harvesting Complex in Lipid Membranes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The structural basis for the stability of the trimeric form of the light harvesting complex (LHCII), a pigmented protein from green plants pivotal for photosynthesis, remains elusive till date. The protein embedded in a dipalmitoylphosphatidylcholine (DPPC) lipid membrane is investigated using all-atom molecular dynamics simulations to find out the interactions responsible for the structural integrity of the trimer and its relation to antenna function. Central association of chlorophyll a (CLA) molecules near the LHCII chains is attributed to a conserved coordination between the Mg of CLA and the oxygen of a specific residue of the first helix of a chain. The residue forms a salt-bridge with the fourth helix of the same chain of the trimer, not of the monomer. In an earlier experiment, three residues (WYR) at each chain of the trimer have been found indispensable for the trimerization and referred to as trimerization motif. We find that the residues of the trimerization motif are connected to the lipids or pigments by a chain of interactions rather than a direct contact. Synergistic effects of sequentially located hydrogen bonds and salt-bridges within monomers of the trimer keep the trimer conformation stable in association with the pigments or the lipids. These interactions are exclusively present in the pigmented trimer and not present in the monomer or in the unpigmented trimer. Thus, our results provide a molecular basis for the inherent stability of the LHCII trimer in a lipid membrane and explain many pre-existing experimental data.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

Data will be available upon reasonable request.

References

  • Albanese P, Tamara S, Saracco G, Scheltema RA, Pagliano C (2020) How paired PSII-LHCII supercomplexes mediate the stacking of plant thylakoid membranes unveiled by structural mass-spectrometry. Nat Commun 11:1361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195

    CAS  PubMed  Google Scholar 

  • Beckstein O, Lacerda P, Domański J, Dotson D, Heavey T, White A, Gowers R, Linke M, Kenney I, Cody, Fan S, Somogyi A, denniej0 2, Loche P, Mohebifar M, Berg A (2019). https://doi.org/10.5281/zenodo.2654393

  • Berendsen HJC, Postma JPM, van Gunsteren WF, Dinola A, Hak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684

    CAS  Google Scholar 

  • Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43

    CAS  Google Scholar 

  • Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    PubMed  Google Scholar 

  • Caffarri S, Croce R, Cattivelli L, Bassi R (2004) A look within LHCII: differential analysis of the Lhcb1-3 complexes building the major trimeric antenna complex of higher-plant photosynthesis. Biochemistry 43(29):9467

    CAS  PubMed  Google Scholar 

  • Carsten O, Ulrich K (2010) Time-dependent atomistic view on the electronic relaxation in light-harvesting system II. J Phys Chem B 114(38):12427

    Google Scholar 

  • Chavan KS, Barton SC (2020) Confinement and diffusion of small molecules in a molecular-scale tunnel. J Electrochem Soc 167(2):023505

    CAS  Google Scholar 

  • Debiec KT, Gronenborn AM, Chong LT (2014) Evaluating the strength of salt bridges: a comparison of current biomolecular force fields. J Phys Chem B 118(24):6561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Debnath A, Wiegand S, Paulsen H, Kremer K, Peter C (2015) Derivation of coarse-grained simulation models of chlorophyll molecules in lipid bilayers for applications in light harvesting systems. Phys Chem Chem Phys 17:22054

    CAS  PubMed  Google Scholar 

  • Dekkera JP, van Roona H, Boekem EJ (1999) Heptameric association of Light-Harvesting Complex II trimers in partially solubilizedphotosystem II membranes. FEBS Lett 449:211

    Google Scholar 

  • Dmitry G, Iuliana S, Verena R, Iwona A, Michael P (2008) Structure and dynamics of photosystem II Light-Harvesting Complex revealed by high-resolution FTICR mass spectrometric proteome analysis. J Am Soc Mass Spectrom 19(7):1004–1013

    Google Scholar 

  • Dockter C, Volkov A, Bauer C, Polyhach Y, Joly-Lopez Z, Jeschke G, Paulsen H (2009) Refolding of the integral membrane protein Light-Harvesting Complex II monitored by pulse EPR. Proc Natl Acad Sci 106(44):18485

    CAS  PubMed  Google Scholar 

  • Donald JE, Kulp DW, DeGrado WF (2014) Salt bridges: geometrically specific. Des Interact Proteins 79(3):898

    Google Scholar 

  • Dreyfuss B, Thornber J (1994) Assembly of the Light-Harvesting Complexes (LHCs) of photosystem II (monomeric LHC IIb complexes are intermediates in the formation of oligomeric LHC IIb complexes). Plant Physiol 106:829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garab G, Cseh Z, Kovócs L, Rajagopal S, Várkonyi Z, Wentworth M, Mustárdy L, Dér A, Ruban AV, Papp E, Holzenburg A, Horton P (2002) Light-induced trimer to monomer transition in the main light-harvesting antenna complex of plants: thermo-optic mechanism. Biochemistry 41(51):15121

    CAS  PubMed  Google Scholar 

  • Girr P, Kilper J, Pohland AC, Paulsen H (2020) The pigment binding behaviour of water-soluble chlorophyll protein (WSCP). Photochem Photobiol Sci 19:695

    CAS  PubMed  Google Scholar 

  • Guerra F, Siemers M, Mielack C, Bondar AN (2018) Dynamics of long-distance hydrogen-bond networks in photosystem II. J Phys Chem B 122(17):4625

    CAS  PubMed  Google Scholar 

  • Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using NetworkX. Proc. SciPy, 11–15

  • Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del R’ıo JF, Wiebe M, Peterson P, G’erard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C (2020) Array programming with NumPy. Nature 585(7825):357–2020. https://doi.org/10.1038/s41586-020-2649-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435

    CAS  PubMed  Google Scholar 

  • Hobe S, Förster R, Klingler J, Paulsen H (1995) N-proximal sequence motif in light-harvesting chlorophyll a/b-binding protein is essential for the trimerization of light-harvesting chlorophyll a/b complex. Biochemistry 34(32):10224

    CAS  PubMed  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Gr. 14:33

    CAS  Google Scholar 

  • Janik E, Bednarska J, Zubik M, Sowinski K, Luchowski R, Grudzinski W, Gruszecki WI (2015) Is it beneficial for the major photosynthetic antenna complex of plants to form trimers? J Phys Chem B 119(27):8501

    CAS  PubMed  Google Scholar 

  • Jorgensen WL, Tirado-Rives J (1988) The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110(6):1657

    CAS  PubMed  Google Scholar 

  • Karki K, Roccatano D (2011) Molecular dynamics simulation study of chlorophyll a in different organic solvents. J Chem Theory Comput 7:1131

    CAS  PubMed  Google Scholar 

  • Kukol A (2009) Lipid Models for United-Atom Molecular Dynamics Simulations of Proteins. J Chem Theory Comput 5(3):615

    CAS  PubMed  Google Scholar 

  • Leach AR (2001) Molecular modelling: principles and applications. Pearson Education Limited, Essex

    Google Scholar 

  • Liguori N, Periole X, Marrink S, Croce R (2015) From light-harvesting to photoprotection: structural basis of the dynamic switch of the major antenna complex of plants (LHCII). Sci Rep 5:15661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liguori N, Campos SRR, Baptista AM, Croce R (2019) Molecular anatomy of plant photoprotective switches: the sensitivity of PsbS to the environment, residue by residue. J Phys Chem Lett 10(8):1737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liguori N, Croce R, Marrink SJ, Thallmair S (2020) Molecular dynamics simulations in photosynthesis. Photosynth Res 144:273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Mod 7:306

    CAS  Google Scholar 

  • Linnanto J, Korppi-Tommola J (2006) Quantum chemical simulation of excited states of chlorophylls, bacteriochlorophylls and their complexes. Phys Chem Chem Phys 8:663

    CAS  PubMed  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004a) Crystal structure of spinach major light-harvesting complex at 2.72 A resolution. Nature 428(18):287

    CAS  PubMed  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004b) Crystal structure of spinach major light-harvesting complex at 2.72 A resolution. Nature 428(6980):287

    CAS  PubMed  Google Scholar 

  • López CA, Sovova Z, van Eerden FJ, de Vries AH, Marrink SJ (2013) Martini force field parameters for glycolipids. J Chem Theory Comput 9(3):1694

    PubMed  Google Scholar 

  • Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105:9954

    CAS  Google Scholar 

  • McGibbon RT, Beauchamp KA, Harrigan MP, Klein C, Swails JM, Hernández CX, Schwantes CR, Wang LP, Lane TJ, Pande VS (2015) MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys J 109(8):1528. https://doi.org/10.1016/j.bpj.2015.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müh F, Zouni A (2020) Structural basis of light-harvesting in the photosystem II core complex. Protein Sci 29(5):1090

    PubMed  PubMed Central  Google Scholar 

  • Nußberger S, Dör K, Wang DN, Kühlbrandt W (1993) Lipid-protein Interactions in Crystals of Plant Light-harvesting Complex. J Mol Biol 234:347

    PubMed  Google Scholar 

  • Ogata K, Yuki T, Hatakeyama M, Uchida W, Nakamura S (2013) All-atom molecular dynamics simulation of photosystem II embedded in thylakoid membrane. J Am Chem Soc 135(42):15670

    CAS  PubMed  Google Scholar 

  • Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13):1656

    CAS  PubMed  Google Scholar 

  • Oostenbrink C, Soares TA, Van der Vegt NF, Van Gunsteren WF (2005) Validation of the 53A6 GROMOS force field. Eur Biophys J 34(4):273

    CAS  PubMed  Google Scholar 

  • Paul BC, Noble MEM (2005) Dynamite extended: two new services to simplify protein dynamic analysis. Bioinformatics 21(14):3174

    Google Scholar 

  • P.T. Inc. (2015) https://plot.ly

  • Peter G, Thornber J (1991) Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. J Biol Chem 266:16745

    CAS  PubMed  Google Scholar 

  • Riniker S (2018) Fixed-charge atomistic force fields for molecular dynamics simulations in the condensed phase: an overview. J Chem Inf Model 58(3):565

    CAS  PubMed  Google Scholar 

  • Ruban AV, Lee PJ, Wentworth M, Young AJ, Horton P (1999) Determination of the stoichiometry and strength of binding of xanthophylls to the photosystem II light harvesting complexes. J Biol Chem 274:10458–10465

    CAS  PubMed  Google Scholar 

  • Scherer MK, Trendelkamp-Schroer B, Paul F, Pérez-Hernández G, Hoffmann M, Plattner N, Wehmeyer C, Prinz JH, Noé F (2015) PyEMMA 2: a software package for estimation, validation, and analysis of markov models. J Chem Theory Comput 11:5525. https://doi.org/10.1021/acs.jctc.5b00743

    Article  CAS  PubMed  Google Scholar 

  • Seiwert D, Witt H, Janshoff A, Paulsen H (2017) The non-bilayer lipid MGDG stabilizes the major Light-Harvesting Complex (LHCII) against unfolding. Sci Rep 7:5158

    PubMed  PubMed Central  Google Scholar 

  • Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution. EMBO J 24(5):919

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701

    Google Scholar 

  • van Eerden FJ, de Jong DH, de Vries AH, Wassenaar TA, Marrink SJ (2015) Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochim Biophys Acta (BBA) Biomembr 1848(6):1319

    Google Scholar 

  • van Eerden FJ, van den Berg T, Frederix PWJM, de Jong DH, Periole X, Marrink SJ (2017) Molecular dynamics of photosystem II embedded in the thylakoid membrane. J Phys Chem B 121(15):3237

    PubMed  Google Scholar 

  • van Oorta B, van Hoeka A, Rubanb AV, van Amerongen H (2007) Aggregation of light-harvesting complex II leads to formationof efficient excitation energy traps in monomeric and trimeric complexes. FEBS Lett 581:3528

    Google Scholar 

  • Wei X, Su X, Cao P, Liu X, Chang W, Li M, Zhang X, Liu Z (2016) Structure of spinach photosystem II-LHCII supercomplex at 3.2Å resolution. Nature 534:69–74

    CAS  PubMed  Google Scholar 

  • Wolf M, Hoefling M, Aponte-Santamaría C, Grubmüller H, Groenhof G (2010) g\_membed: efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation. J Comput Chem 11:2169

    Google Scholar 

Download references

Acknowledgements

This project had been started while the authors (AD, CG, CP) were affiliated with the Max Planck Institute for Polymer Research as part of the Collaborative Research Center (SFB 625) in Mainz: “From Single Molecules to Nanoscopically Structured Materials.” We would like to thank Kurt Kremer and Harald Paulsen for many inspiring discussions. RS and AD are thankful to Arpita Srivastava for her help during the preparation of the manuscript.

Funding

AD, CG, and CP are thankful to SFB 625 and the fellowship program of the Max Planck Society for financial assistance. AD is thankful to the grant SERB CRG/2019/000106 and IITJ SEED grant IITJ/SEED/20140016 for funding.

Author information

Authors and Affiliations

Authors

Contributions

CP has conceived the project. RS and AD have performed the simulations. RS, CG, LF, and AD have performed the analyses. RS, CG, CP, and AD have written the manuscript.

Corresponding author

Correspondence to Ananya Debnath.

Ethics declarations

Conflict of interest

Authors declare that they have no conflicts of interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3055 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, R., Globisch, C., Franke, L. et al. Interactions Determining the Structural Integrity of the Trimer of Plant Light Harvesting Complex in Lipid Membranes. J Membrane Biol 254, 157–173 (2021). https://doi.org/10.1007/s00232-020-00162-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-020-00162-x

Keywords

Navigation