Interleaflet Decoupling in a Lipid Bilayer at Excess Cholesterol Probed by Spectroscopic Ellipsometry and Simulations

Abstract

Artificial lipid membranes are often investigated as a replica of the cell membrane in the form of supported lipid bilayers (SLBs). In SLBs, the phase state of a lipid bilayer strongly depends on the presence of molecules such as cholesterol, ceramide, and physical parameters such as temperature. Cholesterol is a key molecule of biological membranes and it exerts condensing effect on lipid bilayers. In this paper, we demonstrate the influence of excess cholesterol content on a supported lipid bilayer of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (fluid-phase) using spectroscopic ellipsometry (SE) and coarse-grained (CG) molecular dynamics (MD) simulations. The results show the condensation effect due to cholesterol addition up to 30% and interleaflet decoupling at excess cholesterol beyond 30%. SE results show the separation of individual leaflets of the bilayer and influence of cholesterol on the biophysical properties such as thickness and optical index. CG simulations were performed at different ratios of DOPC:cholesterol mixtures to explore cholesterol-driven bilayer properties and stability. The simulations displayed the accumulation of cholesterol molecules at the interface of the lower and upper leaflets of the bilayer, thus leading to undulations in the bilayer. This work reports the successful application of SE technique to study lipid–cholesterol interactions for the first time.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindah E (2015) Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  2. Adhyapak PR, Panchal SV, Murthy AVR (2018) Cholesterol induced asymmetry in DOPC bilayers probed by AFM force spectroscopy. Biochim Biophys Acta Biomembr 1860:953–959. https://doi.org/10.1016/j.bbamem.2018.01.021

    CAS  Article  PubMed  Google Scholar 

  3. Ali MR, Kwan HC, Huang J (2007) Assess the nature of cholesterol-lipid interactions through the chemical potential of cholesterol in phosphatidylcholine bilayers. Proc Natl Acad Sci USA 104:5372–5377. https://doi.org/10.1073/pnas.0611450104

    CAS  Article  PubMed  Google Scholar 

  4. Almeida PF, Carter FE, Kilgour KM, Raymonda MH, Tejada E (2018) Heat capacity of DPPC/cholesterol mixtures: comparison of single bilayers with multibilayers and simulations. Langmuir 34:9798–9809. https://doi.org/10.1021/acs.langmuir.8b01774

    CAS  Article  PubMed  Google Scholar 

  5. Alwarawrah M, Dai J, Huang J (2010) A molecular view of the cholesterol condensing effect in DOPC lipid bilayers. J Phys Chem B 114(22):7516–7523. https://doi.org/10.1021/jp101415g

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Arnarez C, Webb A, Rouvière E, Lyman E (2016) Hysteresis and the cholesterol dependent phase transition in binary lipid mixtures with the Martini model. J Phys Chem B 120:13086–13093. https://doi.org/10.1021/acs.jpcb.6b09728

    CAS  Article  PubMed  Google Scholar 

  7. Arwin H, Aspnes DE (1984) Unambiguous determination of thickness and dielectric function of thin films by spectroscopic ellipsometry. Thin Solid Films 113:101–113. https://doi.org/10.1016/0040-6090(84)90019-1

    CAS  Article  Google Scholar 

  8. Azzam RMA, Bashara NM (1977) Ellipsometry and polarised light. North-Holland Pub, Amsterdam

    Google Scholar 

  9. Beneš M, Billy D, Hermens WT, Hof M (2002) Muscovite (mica) allows the characterisation of supported bilayers by ellipsometry and confocal fluorescence correlation spectroscopy. Biol Chem 383:337–341. https://doi.org/10.1515/BC.2002.037

    Article  PubMed  Google Scholar 

  10. Benzitouni S, Mahdjoub A, Zaabat M (2014) Spectroscopic ellipsometry characterization of thin films deposited on silicon substrate. J. New Technol. Mater. 4:138–142. https://doi.org/10.12816/0010318

    Article  Google Scholar 

  11. Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    CAS  Article  Google Scholar 

  12. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys. https://doi.org/10.1063/1.2408420

    Article  PubMed  Google Scholar 

  13. Carpenter TS, López CA, Neale C, Montour C, Ingólfsson HI, Di Natale F, Lightstone FC, Gnanakaran S (2018) Capturing phase behavior of ternary lipid mixtures with a refined martini coarse-grained force field. J Chem Theory Comput 14:6050–6062. https://doi.org/10.1021/acs.jctc.8b00496

    CAS  Article  PubMed  Google Scholar 

  14. Chiantia S, Kahya N, Ries J, Schwille P (2006) Effects of ceramide on liquid-ordered domains investigated by simultaneous AFM and FCS. Biophys J 90:4500–4508. https://doi.org/10.1529/biophysj.106.081026

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Chiantia S, Ries J, Chwastek G, Carrer D, Li Z, Bittman R, Schwille P (2008) Role of ceramide in membrane protein organisation investigated by combined AFM and FCS. Biochim Biophys Acta Biomembr 1778:1356–1364. https://doi.org/10.1016/j.bbamem.2008.02.008

    CAS  Article  Google Scholar 

  16. De Jong DH, Baoukina S, Ingólfsson HI, Marrink SJ (2016) Martini straight: boosting performance using a shorter cutoff and GPUs. Comput Phys Commun 199:1–7. https://doi.org/10.1016/j.cpc.2015.09.014

    CAS  Article  Google Scholar 

  17. Dols-perez A, Fumagalli L, Gomila G (2014) Structural and nanomechanical effects of cholesterol in binary and ternary spin-coated single lipid bilayers in dry conditions. Colloids Surf B Biointerfaces 116:295–302. https://doi.org/10.1016/j.colsurfb.2013.12.049

    CAS  Article  PubMed  Google Scholar 

  18. Eeman M, Deleu M (2010) From biological membranes to biomimetic model membranes. Biotechnol Agron Soc Environ 14:719–736

    Google Scholar 

  19. El-Nasser HM (2017) Morphology and spectroscopic ellipsometry of PMMA thin films. Appl Phys Res 9:5–11. https://doi.org/10.5539/apr.v9n2p5

    CAS  Article  Google Scholar 

  20. Feigenson GW (2006) Phase behavior of lipid mixtures. Nat Chem Biol 2:560–563. https://doi.org/10.1038/nchembio1106-560

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Finot E, Markey L, Hane F, Amrein M, Leonenko Z (2013) Combined atomic force microscopy and spectroscopic ellipsometry applied to the analysis of lipid-protein thin films. Colloids Surfaces B Biointerfaces 104:289–293. https://doi.org/10.1016/j.colsurfb.2012.12.013

    CAS  Article  PubMed  Google Scholar 

  22. Hofsäss C, Lindahl E, Edholm O (2003) Molecular dynamics simulations of phospholipid bilayers with cholesterol. Biophys J 84:2192–2206. https://doi.org/10.1016/S0006-3495(03)75025-5

    Article  PubMed  PubMed Central  Google Scholar 

  23. Howland MC, Szmodis AW, Sanii B, Parikh AN (2007) Characterisation of physical properties of supported phospholipid membranes using imaging ellipsometry at optical wavelengths. Biophys J 92:1306–1317. https://doi.org/10.1529/biophysj.106.097071

    CAS  Article  PubMed  Google Scholar 

  24. Janicek P, Niang KM, Mistrik J, Palka K, Flewitt AJ (2017) Spectroscopic ellipsometry characterisation of ZnO: Sn thin films with various Sn composition deposited by remote-plasma reactive sputtering. Appl Surf Sci 421:557–564. https://doi.org/10.1016/j.apsusc.2016.10.169

    CAS  Article  Google Scholar 

  25. Johnson SA, Stinson BM, Go MS, Carmona LM, Reminick JI, Fang X, Baumgart T (2010) Temperature-dependent phase behavior and protein partitioning in giant plasma membrane vesicles. Biochim Biophys Acta Biomembr 1798:1427–1435. https://doi.org/10.1016/j.bbamem.2010.03.009

    CAS  Article  Google Scholar 

  26. Jurak M (2013) Thermodynamic aspects of cholesterol effect on properties of phospholipid monolayers: Langmuir and Langmuir–Blodgett monolayer study. J Phys Chem B 117:3496–3502. https://doi.org/10.1021/jp401182c

    CAS  Article  PubMed  Google Scholar 

  27. Kamble S, Patil S, Kulkarni M, Murthy AVR (2019) Spectroscopic ellipsometry of fluid and gel phase lipid bilayers in hydrated conditions. Colloids Surf B Biointerfaces 176:55–61. https://doi.org/10.1016/j.colsurfb.2018.12.061

    CAS  Article  PubMed  Google Scholar 

  28. Khelashvili G, Kollmitzer B, Heftberger P, Pabst G, Harries D (2013) Calculating the bending modulus for multicomponent lipid membranes in different thermodynamic phases. J Chem Theory Comput 9:3866–3871. https://doi.org/10.1021/ct400492e

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Kranenburg M, Smit B (2005) Phase behavior of model lipid bilayers. J Phys Chem B 109:6553–6563. https://doi.org/10.1021/jp0457646

    CAS  Article  PubMed  Google Scholar 

  30. Malmsten M, Kassner U, Winkler K, Schmidt A, Buddecke E, Saunders R, Siegel G (2004) An ellipsometry-based Alzheimer plaque mimic: effect of β-amyloid, lipoprotein identity and apolipoprotein e isoform. J Colloid Interface Sci 276:503–506. https://doi.org/10.1016/j.jcis.2004.05.044

    CAS  Article  PubMed  Google Scholar 

  31. Melo MN, Ingólfsson HI, Marrink SJ (2015) Parameters for Martini sterols and hopanoids based on a virtual-site description. J Chem Phys 143:243152. https://doi.org/10.1063/1.4937783

    CAS  Article  PubMed  Google Scholar 

  32. Mills TT, Toombes GES, Tristram-Nagle S, Smilgies D-M, Feigenson GW, Nagle JF (2008) Order parameters and areas in fluid-phase oriented lipid membranes using wide angle X-Ray scattering. Biophys J 95:669–681. https://doi.org/10.1529/biophysj.107.127845

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Murthy AVR, Guyomarc’h Lopez FR (2016a) The temperature-dependent physical state of polar lipids and their miscibility impact the topography and mechanical properties of bilayer models of the milk fat globule membrane. Biochim Biophys Acta Biomembr 1858:2181–2190. https://doi.org/10.1016/j.bbamem.2016.06.020

    CAS  Article  Google Scholar 

  34. Murthy AVR, Guyomarc’h F, Lopez C (2016b) Cholesterol decreases the size and the mechanical resistance to rupture of sphingomyelin rich domains, in lipid bilayers studied as a model of the milk fat globule membrane. Langmuir 32:6757–6765. https://doi.org/10.1021/acs.langmuir.6b01040

    CAS  Article  PubMed  Google Scholar 

  35. Murthy AVR, Guyomarc’h F, Paboeuf G, Vié V, Lopez C (2015) Cholesterol strongly affects the organisation of lipid monolayers studied as models of the milk fat globule membrane: condensing effect and change in the lipid domain morphology. Biochim Biophys Acta Biomembr 1848:2308–2316. https://doi.org/10.1016/j.bbamem.2015.06.014

    CAS  Article  Google Scholar 

  36. Oh Y, Sung BJ (2018) Facilitated and non-gaussian diffusion of cholesterol in liquid ordered phase bilayers depends on the flip-flop and spatial arrangement of cholesterol. J Phys Chem Lett 9:6529–6535. https://doi.org/10.1021/acs.jpclett.8b02982

    CAS  Article  PubMed  Google Scholar 

  37. Pan J, Mills TT, Tristram-Nagle S, Nagle JF (2008) Cholesterol perturbs lipid bilayers nonuniversally. Phys Rev Lett 100:198103. https://doi.org/10.1103/PhysRevLett.100.198103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Pantelopulos GA, Straub JE (2018) Regimes of complex lipid bilayer phases induced by cholesterol concentration in MD simulation. Biophys J 115:2167–2178. https://doi.org/10.1016/j.bpj.2018.10.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Parker A, Miles K, Cheng KH, Huang J (2004) Lateral distribution of cholesterol in dioleoylphosphatidylcholine lipid bilayers: cholesterol-phospholipid interactions at high cholesterol limit. Biophys J 86:1532–1544. https://doi.org/10.1016/S0006-3495(04)74221-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190. https://doi.org/10.1063/1.328693

    CAS  Article  Google Scholar 

  41. Petrache HI, Tristram-Nagle S, Gawrisch K, Harries D, Parsegian VA, Nagle JF (2004) Structure and fluctuations of charged phosphatidylserine bilayers in the absence of salt. Biophys J 86:1574–1586. https://doi.org/10.1016/S0006-3495(04)74225-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Pradhan P, Aryal P, Attygalle D, Ibdah A-R, Koirala P, Li J, Bhandari K, Liyanage G, Ellingson R, Heben M, Marsillac S, Collins R, Podraza N (2018) Real Time Spectroscopic Ellipsometry Analysis Of First Stage CuIn1−xGaxSe2 growth: indium–gallium selenide co-evaporation. Materials (Basel) 11:145. https://doi.org/10.3390/ma11010145

    CAS  Article  Google Scholar 

  43. Redondo-Morata L, Giannotti MI, Sanz F (2012) Influence of cholesterol on the phase transition of lipid bilayers: a temperature-controlled force spectroscopy study. Langmuir 28:12851–12860. https://doi.org/10.1021/la302620t

    CAS  Article  PubMed  Google Scholar 

  44. Richter RP, Bérat R, Brisson AR (2006) Formation of solid-supported lipid bilayers: an integrated view. Langmuir 22:3497–3505. https://doi.org/10.1021/la052687c

    CAS  Article  PubMed  Google Scholar 

  45. Marrink SJ, Jelger Risselada H, Yefimov S, Peter Tieleman D, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824. https://doi.org/10.1021/JP071097F

    CAS  Article  Google Scholar 

  46. Marrink SJ, de Vries AH, Mark AE (2003) Coarse grained model for semiquantitative lipid simulations. J Phys Chem B 108:752–760. https://doi.org/10.1021/JP036508G

    Article  Google Scholar 

  47. Striebel C, Brecht A, Gauglitz G (1994) Characterisation of biomembranes by spectral ellipsometry, surface plasmon resonance and interferometry with regard to biosensor application. Biosens Bioelectron 9:139–146. https://doi.org/10.1016/0956-5663(94)80105-3

    CAS  Article  PubMed  Google Scholar 

  48. Sullan RMA, Li JK, Hao C, Walker GC, Zou S (2010) Cholesterol-dependent nanomechanical stability of phase-segregated multicomponent lipid bilayers. Biophys J 99:507–516. https://doi.org/10.1016/j.bpj.2010.04.044

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Van Der Meulen SAJ, Dubacheva GV, Dogterom M, Richter RP, Leunissen ME (2014) Quartz crystal microbalance with dissipation monitoring and spectroscopic ellipsometry measurements of the phospholipid bilayer anchoring stability and kinetics of hydrophobically modified DNA oligonucleotides. Langmuir 30:6525–6533. https://doi.org/10.1021/la500940a

    CAS  Article  PubMed  Google Scholar 

  50. Veiga MP, Arrondo JL, Goñi FM, Alonso A (1999) Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases. Biophys J 76:342–350. https://doi.org/10.1016/S0006-3495(99)77201-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Vidawati S, Sitterberg J, Bakowsky U, Rothe U (2010) AFM and ellipsometric studies on LB films of natural asymmetric and symmetric bolaamphiphilic archaebacterial tetraether lipids on silicon wafers. Colloids Surf B Biointerfaces 78:303–309. https://doi.org/10.1016/j.colsurfb.2010.03.015

    CAS  Article  PubMed  Google Scholar 

  52. Wang Y, Gkeka P, Fuchs JE, Liedl KR, Cournia Z (2016) DPPC-cholesterol phase diagram using coarse-grained molecular dynamics simulations. Biochim Biophys Acta Biomembr 1858:2846–2857. https://doi.org/10.1016/j.bbamem.2016.08.005

    CAS  Article  Google Scholar 

  53. Wassenaar TA, Ingólfsson HI, Böckmann RA, Tieleman DP, Marrink SJ (2015) Computational lipidomics with insane: a versatile tool for generating custom membranes for molecular simulations. J Chem Theory Comput 11:2144–2155. https://doi.org/10.1021/acs.jctc.5b00209

    CAS  Article  PubMed  Google Scholar 

  54. Zhang J, Xue R, Ong W-Y, Chen P (2009) Roles of cholesterol in vesicle fusion and motion. Biophys J 97:1371–1380. https://doi.org/10.1016/j.bpj.2009.06.025

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the DST-Inspire Faculty scheme from the Department of Science and Technology (DST) (DST/INSPIRE/04/2015/000207) for the funding of this work. The authors also thank DIAT for infrastructural support in implementing this project. SK thanks DIAT for a Ph.D. fellowship. The authors also thank Dr. Suwarna Datar for her support.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mandar Kulkarni or Venkata Ramana Murthy Appala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 Movie M1: Movie of 10% cholesterol system. PO4 beads of DOPC are indicated by pink color, cholesterol molecules by yellow and DOPC chains by cyan color. (MP4 69523 KB)

Supplementary file2 Movie M2: Movie of 10% cholesterol system. PO4 beads of DOPC are indicated by light gray color, cholesterol molecules by yellow and DOPC chains by cyan color. (MP4 180937 KB)

Supplementary file3 Movie M3: Movie of 50% cholesterol system depicting diffusion of cholesterol from 2 μs to 3 μs simulation time with a view along XY-plane. The cholesterol molecules are presented by beads, and color code indicates radial position from centrally localized (red) to outer sides (blue). (MPG 89007 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamble, S., Patil, S., Kulkarni, M. et al. Interleaflet Decoupling in a Lipid Bilayer at Excess Cholesterol Probed by Spectroscopic Ellipsometry and Simulations. J Membrane Biol 253, 647–659 (2020). https://doi.org/10.1007/s00232-020-00156-9

Download citation

Keywords

  • Lipid membranes
  • DOPC
  • Cholesterol
  • Spectroscopic ellipsometry
  • MARTINI force field
  • Coarse-grained simulations